
Validation
within

Safety Critical Systems Engineering
from a Computational Semiotics Point of View

G. Doeben-Henisch
Department of Computer Science

FH Frankfurt am Main
University of Applied Sciences

D-60318 Frankfurt am Main
Germany

Email: gerd@doeben-henisch.de
Senior Member, IEEE

M. F. Wagner
Department of Computer Science

FH Frankfurt am Main
University of Applied Sciences

D-60318 Frankfurt am Main
Germany

Email: mfwagner@ieee.org
Member, IEEE

Abstract— Software controlled Safety Critical Systems are
increasing in importance in all areas of application. Combining
efficient agile development processes with powerful but complex
modeling and formal methods imposes grand challenges on
software designing organizations. Especially the semiotic dimen-
sion which relates stakeholders and engineers in an engineering
process is evoking such challenges. Focusing on these processes as
basis for domain modeling and as point of reference for validation
the authors outline a simulation based approach to overcome
the semantic gap. But they know, that this still can only be a
preparatory step for much more detailed semiotic analyses.

I. INTRODUCTION

A. Safety and Mission Critical Systems

Today most safety (SCS) and mission critical systems
(MCS) rely on software as their most important but also
most complex component. Advances in the design and ma-
nufacturing of hardware, e.g. electronic miniaturization, have
enabled the spread of digital safety critical systems from
military, aerospace and nuclear energy applications to all other
technical domains, i.e. medical diagnostics and therapy, auto-
motive systems, railroad systems, facility management, etc..
Further technological advances will produce more software
intensive High-Integrity Systems. Safety is an emergent system
property ([1]) requiring more stringent development methods
than in other areas. The development of SCS is in many
domains regulated by international and national standards (for
an overview compare [2]). The increasing demands pose many
challenges to the organizations developing software for SCS.
In addition there is a need for efficient development processes
to survive in a global economy. Agile development paradigms
are being used successfully in many application developments.
The use of modeling in various phases of the diverse software
engineering process models represents another approach to
cope with software and systems requirements analysis and the

complexities of design. An increasing number of computer
scientists believe that the time is now ripe for the use of
formal methods in software development and that it is now
possible and feasible to guarantee high-quality and safe soft-
ware products ([3]). Although this expectation seems to be
true to some extend, it becomes evident, that the semiotic
dimension which relates stakeholders and engineers in an
engineering process, is revealing difficulties which cannot
simply be solved. In this paper we want to present some of
these difficulties accompanied with some suggestions, how we
possible can cope with them.

B. Assumed Core Elements of the SCS-Engineering Process

To be able to talk more precisely about the difficulties
rooted in the semiotic dimension of the SCS-Engineering
Process we have to define the Core Elements of the SCS-
Engineering Process (cf. [1], [10], [11], [12], [6]) with their
relationships to several known safety standards adding system
safety requirements to such engineering processes (cf. IEC
61508 [4], RTCA DO-178B [5], [2], [7])

For our discussion we are focussing on the following
elementary phases of an SCS engineering process: (i) Requi-
rements specification, (ii) modeling a possible solution, (iii)
implementing the model, and (iv) evaluating the implemented
system against the requirements specification. Between this
terminology and that used in the MDA-Approach ([6]) –
which will be reviewed later in this paper– we assume the
following approximate coupling: (i) CIM as requirements
specification, (ii) PIM, PM, and PSM as modeling. The phases
implementation and evaluation are not official parts of the
MDA - approach.

Some more assumptions are necessary.
As one can see in Fig.1 we assume as Core Actors the

stakeholder and the engineer. These have to clarify in a com-



Fig. 1. Requirements Specification

munication process the requirements for the problem which
has to be engineered. The communication process is supported
by different kinds of documents. Core Types of Documents
are those in Natural Language (NL), those as Visual Models
(VM), and those as Formal Models (FM). Whereas the re-
lationship between NL-documents at one site and VM- and
FM-documents otherwise can by semiotic reasons not easily
be defined, we do assume a 1-to-1 mapping between VM-
and FM-documents, which can be supported by computable
algorithms.

Furthermore we do assume that the intended meaning of
all these different kinds of requirements documents has to be
equal. Although it is difficult to define this required equality
precisely, it is clear, that without such an equality the set of
all those documents will be inconsistent.

Because the term ’meaning’ is a technical term, highly
depending in its meaning from the presupposed theoretical
framework, we have to state that we are assuming here a
semiotic framework. Because the reference to semiotics as
such is still very fuzzy –take for instance the authors de
Saussure, Peirce, Moris, and Hjelmslev (cf. [15])– we will
use here a basic formalization of the sign concept of Peirce,
which I have proposed in [16]. Within his phenomenological
approach Peirce is using a sign concept with three interacting
moments, the object (O), which is signified, the sign vehicle
(S) as representative of the object, and the interpretant (I); the
I represents the cognition produced in the mind of a human
system on occasion of O. This concept is dynamic insofar as
the I can be selective with regard to the O and the I can change.
In my formalization of this concept (cf. [16], p.127) I have
introduced the grounding operator grounding : O×S×Q →
I with Q as a set of qualities with I, S,O ⊆ 2Q. Thus, we
can state that a sign is technically speaking a minimal structure
like SIGN(x, p) iff x = 〈I, S,O, grounding〉, where x is
the sign and p that person p to which this sign belongs. The
’meaning’ is then an inherent property of this structure. We
could say that the ’meaning’ of a sign x of a person p in the
context of a certain O and I is extentionally the O –as long
as the O is a direct empirical object without being again a
sign vehicle S– and intentionally the I as that moment, which
represents the extensional meaning of the sign vehicle S in the
person p. When the O is itself a sign vehicle S’ as moment
of another sign x’, the concept of meaning can become more

and more nested. We could define meaningInt(x, p)O,S =
I . Then, using this formalization we could represent the
intentional meanings of the stakeholder SH and the engineer
ENG (cf. Fig.1) as meaningIint(x, SH)OSH ,SSH

= ISH and
meaningIint(x,ENG)OENG,SENG

= IENG We call these
intentional meanings the Required Domain Model (RDM) (cf.
Fig. 2).

In the context of engineering we assume that the exten-
sional meanings OSH = OENG are equal with regard to
the processes which have to be modeled. In practice are the
objects O not purely extensionally but mixed up with sign
vehicles nesting the possible extensional meanings in fuzzy
ways. The minimal condition for an equality of the RDMs as
the intentional meanings ISH or IENG is, that the representing
sign vehicles SSH , SENG as natural language texts, as visual
models or as formalized structures (cf. Fig. 2) are congruent.
But even if we have a complete congruence SSH = SENG we
have no guarantee, that this implies a congruence between the
intentional meanings ISH = IENG too. Because the internal
coupling of the I to the O and S is only implicitly given,
we can never be completely sure that ISH = IENG or that
RDMSH = RDMENG. This describes the semantic gap of
requirements modeling in software engineering.

The assumed content of the RDM is in this paper informally
described as the User who is acting to solve some Tasks, then
the Environmental Conditions which have to be taken into
account, and the User Interface (UI). We distinguish between
two states of the UI: The user interface core (UIC) and the user
interface shape (UIS). The user Interface Core (UIC) contains
the logical substrate of all the assumed interactions between
the user and the wanted system. This ’logical’ concept of the
UIC can be realized by different kinds of ’real’ User Interface
Shapes (UIS). Furthermore one has to keep in mind that the
relationship between a user, a system and the environmental
conditions can vary through time.

The overall view of the assumed engineering process is
shown in Fig. 3. The modeling activity in the second phase
has to be in conformity with the UI. The requirements do-
cuments (NL,VMs,FMs) together with the UI and the Model
are constituting the Symbolic Space. Only in this Symbolic
Space is Verification possible! The mapping from the symbolic
Model (PIM, PM, PSM) into a concrete running system is a
transgression from the symbolic space into the physical world.
This mapping is never 1-to-1, it can only be an approximation.
The final system has then to be evaluated in the Validation
procedure. Validation assumes the RDM as a valid point of
reference and tries to compare the implicitly given RDM with
the aid of the sign vehicles NL, VM, or FM to the Implemented
Domain Model (IDM). One gets the IDM out of the RDM
by replacing the abstract concepts by real properties of a real
running system. As long as the stakeholder did not see the real
running system there can never be a complete clarity whether
the RDM is really conforming with the running system in all
its variations.

From this overall picture there arise many questions. Some
of these we will discuss in this paper.



Fig. 2. Required Domain Model (RDM)

C. Safety Certification

Development of SCS must be accompanied by a certification
process demanding to fulfil the requirements of appropriate
standards or guidelines (cf. [2]). This certification process
must be incorporated into the system and software engineering
process model. In modern approaches modeling on various
levels gains importance. We will discuss as an example Model
Driven Architecture (MDA) [6] and the difficulties for the
validation of emergent system properties like safety.

II. SAFETY STANDARDS

A. Overview

There are many safety standards, domain specific or generic,
national and international standards (cf. [2]). The newer ones
cover explicitly the development of the most complex system
component, software. For our purposes the generic IEC 61508
[4] should serve as an example for the challenges to satisfy
safety standard requirements in software development.

B. IEC 61508

IEC 61508 is a generic international standard that
addresses the functional safety of systems, and primarily
systems developed using electrical, electronic and computer
technology. It is the base for the development of many SCS
with a high software content. The framework for IEC 61508
is a safety life cycle model which is superimposed on a
systems life cycle model (cf. [4]).

In addition to the normal complexities of software
development system-level and domain specific safety
requirements have to be traced through the whole software

Fig. 3. SCS Core Elements

Fig. 4. Model Driven Architecture cf. [6]

process. Therefore the software process model has to be
enhanced in order to fulfill the traceability of the safety
requirements (cf. [7] for a discussion of the merger of the
IEC 61508 life cycle with the Rational Unified Process).

IEC 61508 places special emphasis on validation planning
and validation as indicated in figure 2 of part 1 of IEC 61508
(cf. [4]).

III. MODEL DRIVEN ARCHITECTURE

The extensive use of modeling for the development of SCS
especially in the context of the Model Driven Architecture
([6]) approach represents a new paradigm compared to stan-
dard methods in traditional process models.

Compared to other techniques MDA emphasizes the
early phases in software engineering process models. The
application and problem domains are being modeled using the



UML. MDA’s vision is to generate code automatically from
this visual model (VMD). MDA’s approach is not altogether
different from earlier approaches. The main difference is the
goal to automate the transformations between CIM, PIM,
PSM and Code. Figure 4 draws only a simplified picture of
the possible transformations (model-to-model, model-to-code)
of the MDA. For the development of SCS the transformations
represent the crucial parts of the MDA. The incorporation,
verification and validation of emergent and domain specific
safety requirements (cf. 4) are subject to great research
efforts ([8], [9]). For complex SCS with common safety goal
the MDA is based on separate domains, each representing
a specific perspective on the RDM, such as a specific body
of theory related to the application or a technology. Safety
requirements exist at every level of abstraction (CIM, PIM,
PSM) Many safety requirements only emerge during the
different analysis and design phases and can be considered as
derived safety requirements. Therefore it may not be possible
to state the safety requirements completely at the PIM level.
For development projects based on MDA, it is necessary to
consider the implications of the safety lifecycle as part of the
process (cf. [8]).

A additional problem is the lack of tools to help in the
process [13].

IV. VALIDATION AND VERIFICATION PROBLEMS

A. The Definitions of Verification and Validation

The definition of verification as well as validation varies
greatly depending on the software engineering process model
in use (waterfall model, spiral model [10], V-Modell XT
[11], Unified Process [12], etc.) (cf. [19], [18]). Following
[18] we assume here as key definitions the following ones:
Verification is the task of checking that a model matches a
given specification. A model is correct if it fulfills all the
properties given in the specification. Validation is the process
of checking whether the system or model behaves as the
stakeholder expects it to. This includes the complete required
domain model. It is important to notice, that in the framework,
which we are assuming here, verification and validation are
completely independent from each other. While a verification
process can give a 100% error-free result, can the validation
process nevertheless deliver some faults, and vice versa. Thus
an engineering process has to handle both processes as indivi-
dual processes which have to be kept separately. In this paper
we will mainly focus on the validation process, some of it’s
problems and possible solutions.

B. Problems with Validation

From the definition of validation above follows that the
expectations of the stakeholder (= ISH = RDMSH ) are the
point of reference with which the behavior of a real system
(= IDM) has to be compared. We distinguish at least two
important phases in the validation process: (i) Adequacy of
models: The mapping of the intentions of the stakeholder
(also called mental models or cognitive models) into sign

vehicles like NL, VM, and FM, and (ii) Correctness of system
behavior: the comparison between a real running system (=
IDM) and the textual, visual, or formal models representing
the RDM.

In the ideal case we have the stakeholder using the running
system some time and then he judges that everything ’behaves
well’. But this is not the normal case. In most real cases we
have requirements documents describing a user and system
behavior which is far too complex for a direct inspection by
a human. The same holds for the test of the real system.

The difference between the intentions of the stakeholder
(= RDM) and the possible meanings of the different kinds
of (textual, visual, formal) representations is often called
Semantic Gap. Especially if the representational structure is
given as a formal language which is additionally encoded with
the aid of some formal semantics, then is the meaning of
such an representational device for a stakeholder nearly not
understandable; even the software experts which have to build
software based on such representations have generally great
difficulties to reconstruct such formally encoded meanings.

On the other side exists the need for formalization to be able
to cope with complexities and to prove essential properties of
a model or a system.

V. KNOWN SOLUTIONS

A. SpecTRM

Leveson et al. [20] developed a set of tools for applica-
tion to process-control systems with the goal to lower the
semantic gap between domain experts on the system level
and software engineers. SpecTRM-RL (Specification Tools
and Requirements Methodology - Requirements Language) is
part of a specification framework that includes both formal and
informal specifications. The blackbox behavioral requirements
specifications are described using a control loop type front
end, which has an underlying state-machine model (Mealy
automaton). The control loop serves as a visual model (VM),
whereas the state machine is the formal model (FM) in our
language.

B. Safety Patterns

An approach using Safety Argument Patterns is proposed
by [8], [21] that combines the need for consistent traceable
arguments with the need to recognize separate domains, each
of which contributes to emergent safety behavior. The concept
is based on the idea that the safety argument patterns fit
together to make up the safety argument in its entirety. The
conditions of one pattern could be derived from the output of
the preceding pattern. By this approach the safety argument
is constructed coherently across the different domains and
combined in the overall process. It includes clearly defined
interfaces to reduce the problem of inconsistencies. Another
advantage is the possible reuse of common structures of safety
case arguments [22]. The patterns are defined using Goal
Structuring Notation (GSN) [21] as a VM.



Fig. 5. Reformulating the IDM

C. Formal Methods for Safety

Bitsch [23] proposes the use of Safety Patterns to transfer
domain expert knowledge and to enable them to check espe-
cially safety requirements for the SCS under consideration.
Bitsch’s approach uses a set of patterns for complete requi-
rements. The patterns are explained in natural language, but
expressed in formal logic. Different formal notations enable
the use of model checkers for verification and validation of
the requirements.

VI. VALIDATION REVISITED

Accepting that there is a real need for formal methods to
cope with the complexity of the requirements and to be able to
prove essential properties, one is left with the task to solve the
problem how to bridge the semantic gap. Because the source
of the semantic gap is the stakeholder with his typical way of
understanding one has to find a solution which is in conformity
with the way how the user understands.

The best known approach today to bridge the semantic gap
is to extend the natural language description of the problem
with visual models (VM) which can represent a RDM close
to the way how a human experiences the behavior of objects
in his world. The problem of the semantic gap would then be
converted into the adequacy problem of the computed visual
models. This we call the strategy of adequate simulations. The
interesting question is, whether one could use adequate visual
models for the correctness test too?

One possible strategy to do this is shown in Fig. 5.
One structures the whole domain in the implemented system

S with the attached UIS at one side and all the other com-
ponents (tasks, user, environmental conditions) as the Non-
System, understood as the environment E of the system. What
is left then are the possible interactions between E and S. One

task is to translate all these interactions into the expressions of
an input output language LI−0 which has to be described by a
formal grammar GI−O. If such a translation is not possible one
has a first strong indicator that the whole set of interactions
is not computable. If the grammar GI−O can be constructed
one has to model the environment E as an automaton AE

which can cope with the language LI−0. A minimal condition
is that the automaton is a turing machine. But because turing
machines can correlate with complexity classes which are in
practice not really feasible one has to try to find ’simpler’
automata which can handle the task in an acceptable time
(this implies that the corresponding grammar GI−O itself has
also a lower position in the Chomsky-Hierarchy for formal
languages). A first domain simulator (DSIMI−O) would then
be a structure like < LI−0, AE >, where the automaton is the
operator working on the language as set of expressions.

To prove the correctness of the IDM one has to compare
the behavior of the IDM with the RDM. This can be done by
applying the concept of the domain simulator DSIM also to the
RDM. This implies that one has to construct the requirements
models for the RDM accordingly. One approach would be to
use for the visual models so called state charts (as described
in the SysML-Standard, cf.[24]). One state in such a state
chart would then represent a complete situation containing
the user U, the actual task T, and the actual environmental
conditions E. An action by the system S would be represented
as an input event I to the state which will cause the state
to change, usually paired with the generation of an output
action O. Such an output action will again be an event which
causes different system responses as new input events I. To
represent this formally one needs a richer language LREQ than
the language LI−0. This domain simulator (DSIMREQ) would
then be a structure like this: < LREQ, AREQ >.

In principle it is no problem to use DSIMREQ instead of the
DSIMI−O for the correctness test too. On the contrary such an
approach would improve the transparency of the correctness
test because all assumptions about the user and his environ-
ment have to be made explicit. The same domain simulator
could then be used for the adequacy and the correctness test
within validation.

Furthermore one can map the state chart representing a
complete situation into a directed cyclic graph (DCG) where
every task Ti corresponds to one directed cyclic graph DCGT.i

whose different paths correspond to the different runs of the
automaton depending from the input I from the system S. We
call such a graph a task graph (TG). Whereas repetitions (=
cycles) seem to be realistic, it seems to be unrealistic to assume
tasks which are for a user not finitely solvable. Therefore we
assume that the task graph for a certain system has only a finite
depth. This does not exclude that there can be runs which are
conditionally cycling. This represents the case where a user has
to repeat some actions until he reaches a certain state which
results in the satisfaction of a certain condition. Thus a task
graph is a directed cyclic graph (DCG) whose processing is
bounded to finite runs.

From the point of view of SCS engineering one is during



validation not only interested in the overall correctness of the
behavior of the system but also especially in the property of
safety (cf. [25]). In this context does the property safety mean,
that ’bad things’ do not happen during all the runs. This means
the task graph does not show a certain bad property in all its
branches.

For practical reasons one can think of DSIMREQ also as
a collection of simulators like DSIMREQ−T , DSIMREQ−U ,
and DSIMREQ−E , or one is using only a domain simulator
for the user DSIMREQ−U and interfaces this simulator with
T, E and the real system S. Another consideration is to build
also a system simulator (SSIM) for supporting development,
testing as well as –later on– for customer training.

VII. CONCLUSION

These considerations show how one can formalize and
automatize the validation process. Ideally one should provide
here also a review of all the known software tools supporting
the idea of a domain simulator as described above. But this
task has to be delayed for a future paper. The authors want only
to mention that besides the well know Petri-Net Approach (see
e.g. [17]) they are engaged in an open-source project called
PlanetEarthSimulator (PES-Simulator) (cf. [26], [27]), which
is targeting the idea of a domain simulator which is based
on a visual modeling language representing horizontal and
vertical networks of input-output systems which internally for
the underlying automaton are represented as directed cyclic
graphs.

REFERENCES

[1] Leveson, Nancy G.: Safeware - System Safety and Computers. Addison
Wesley, Boston, MA, 1995

[2] Herrmann, Debra S.: Software Safety and Reliability. IEEE Computer
Society Press, Los Alamitos, CA, U.S.A., 1999

[3] Woodcock, Jim: First Steps in the Verified Software Grand Challenge.
IEEE Computer, IEEE Computer Society, October 2006, p. 57

[4] IEC 61508: Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems. International Electrotechnical Commission,
Geneva, Switzerland, http://www.iec.ch

[5] DO-178B: Software Considerations in Airborne Systems and Equipment
Certification. Radio Technical Commission for Aeronautics (RTCA)
Standard DO-178B/ED-12B, Dez. 1999.

[6] MDA Guide Version 1.0.1 Document Number: omg/2003-06-01 Date:
12th June 2003 http://www.omg.org/docs

[7] Frederiksen, Rune: Use of the Rational Unified Process for development
of safety-related computer systems. Thesis, Hogskolen i Ostfold Avdeling
for infomatikk og automatisering, 2002

[8] Audsley, N.; Conmy, P. M.; Crook-Dawkins, S. K.; Hawkins, R.: Safety
Challenges for Model Driven Development. In Metamodelling for MDA;
First International Workshop; York, UK, November 2003

[9] Ehrlich, Alwina: Model Driven Architecture fuer die Entwicklung si-
cherheitskritischer Systeme. Diploma Thesis, FH - Frankfurt am Main
- University of Applied Sciences, 2007

[10] Boehm, B.: A Spiral Model for Software Development and Enhance-
ment. Computer, vol. 21, no.5, May 1988

[11] Das V-Modell XT. Version 1.2.0 Bundesrepublik Deutschland,
http://ftp.uni-kl.de/pub/v-modell-xt/Release-1.2/,
Dokumentation/html/, 2007.

[12] Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Develop-
ment Process. Addison-Wesley, 1999

[13] Houberdon, Jean-Louis; Babau, Jean-Philippe: MDA for embedded sy-
stems dedicated to process control. In Workshop on Model Driven Ar-
chitecture in the Specification, Implementation and Validation of Object-
Oriented Embedded Systems (SIVOEES), UML2003, San-Francisco, CA,
U.S.A., October 2003

[14] Lutz, Robyn R.: Software Engineering for Safety. A Roadmap. in The
Future of Software Engineering, Anthony Finkelstein (Ed.), ACM Press
2000

[15] Noeth, W., Handbuch der Semiotik, 2nd ed., renewed and extended,
Stuttgart - Weimar: J.B.Metzler Publisher

[16] Doeben-Henisch, G. Reconstructing Human Intelligence within Com-
putational Sciences: An Introductory Essay, In: Loula, A.; Gudwin, R.;
Queiroz, J.; Artificial Cognition Systems, Eds., Hershey - London: Idea
Group Publishing, 2006, pp.106-139

[17] Girault, Claude; Valk, Rüdiger (Eds.): Petri Nets for Systems Engineers.
A Guide to Modeling, Verification, and Applications. Springer, Berlin -
Heidelberg - New York, 2003.

[18] Moldt, D.; Kordon, F.: Systems Engineering and Validation In: Girault,
Claude; Valk, Rüdiger (Eds.): Petri Nets for Systems Engineers. A Guide
to Modeling, Verification, and Applications. Springer, Berlin - Heidelberg
- New York, 2003, pp.405-415.

[19] Haddad, S.: Introduction: Issues in Verification, In: Girault, Claude;
Valk, Rüdiger (Eds.): Petri Nets for Systems Engineers. A Guide to
Modeling, Verification, and Applications. Springer, Berlin - Heidelberg
- New York, 2003, pp.183-200.

[20] Leveson, Nancy G.; Heimdahl, Mats P.E.; Reese, Jon Damon:Designing
Specification Languages for Process Control Systems: Lessons Learned
and Steps to the Future. In Software Engineering - ESEC/FSE’99: 7th
European Software Engineering Conference, Held Jointly with the 7th
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Toulouse, France, September 1999. Proceedings

[21] Kelly, T. P.: Arguing Safety - A Systematic Approach to Managing Safety
Cases. Dphil Thesis, University of York, UK, 1999.

[22] Kelly, T. P.; McDermid, J. A.: Safety Case Construction and Reuse
using Patterns. In Proceedings of 16th International Conference on
Computer Safety, Reliability and Security (SAFECOMP’97), September
1997, Springer

[23] Bitsch, F.: Safety Patterns - The Key to Formal Specification of Safety
Requirements. In: Proceedings of the 20th International Conference
on Computer Safety, Reliability and Security, Springer Verlag Berlin
Heidelberg, Lecture Notes In Computer Science; Vol. 2187, 2001, p. 176

[24] OMG-SysML, OMG SysML Specification v. 1.0 (Final Adopted Specifi-
cation) [May 2006]. http://www.omg.org/cgi-bin/doc?ptc/06-05-04 (Last
visited March 21, 2007)

[25] Duttheillet, C.; Vernier-Mounier, I.; Illie, J.-M.; Poitrenaud, D.: State-
Space-Based Methods and Model Checking. In: Girault, Claude; Valk,
Rüdiger (Eds.): Petri Nets for Systems Engineers. A Guide to Modeling,
Verification, and Applications. Springer, Berlin - Heidelberg - New York,
2003, pp.201-275.

[26] Doeben-Henisch, G.: The Planet Earth Simulator Project - A Case
Study in Computational Semiotics, In: Proceedings IEEE AFRICON2004
Conference, 2004, pp.417-422.

[27] Doeben-Henisch, G.: Reducing Negative Complexity by a Semiotic
System. In: Gudwin, R., & Queiroz, J., (eds). Semiotics and Intelligent
Systems Development. Hershey et al: Idea Group Publishing, 2006,
pp.330-342.


