The overall characteristics of GA with only crossover is that the system reaches in a few cycles a maximum which then does not change any more. This maximum can be quite low (cf. figure 3.20). The difference between the highest and lowest values of fitness is in all three experiments very high. This results from the fact that the system starts with some low value and then quickly stays with the maximal values for all following cycles.
POPX =
1. 0. 0.
1. 0. 1.
1. 0. 0.
1. 1. 0.
-->l=3,p=5,n=4,N=128,
MThreshold=N+1,show=2,[FITNESS_ALL_PERC1,DIST2,STD, MEAN, FREQ,STD1,
MEAN1, FREQ1,FX, POP]=ga0(POPX,l,p,n,N, MThreshold,show)
Number of Events n * N = 512
FX =
0. 0. 0. 0. 0. 0.
1. 0. 0. 0. 0. 0.
2. 0. 0. 0. 0. 0.
3. 0. 0. 0. 0. 0.
4. 14. 0.0273438 21.875 0. 0.
5. 3. 0.0058594 4.6875 0. 0.
6. 248. 0.484375 387.5 0. 0.
7. 247. 0.4824219 385.9375 0. 0.
MEAN =
160.
STD =
177.12163
DIST2 =
193.75
FITNESS_ALL_PERC1 =
47.44898
49.489796
49.489796
47.44898
57.653061
59.693878
76.530612
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
POPX =
1. 1. 0.
0. 1. 1.
1. 1. 1.
0. 0. 0.
-->l=3,p=5,n=4,N=128,
MThreshold=N+1,show=2,[FITNESS_ALL_PERC1,DIST2,STD, MEAN, FREQ,STD1,
MEAN1, FREQ1,FX, POP]=ga0(POPX,l,p,n,N, MThreshold,show)
Number of Events n * N = 512
FX =
0. 1. 0.0019531 1.5625 0. 0.
1. 0. 0. 0. 0. 0.
2. 0. 0. 0. 0. 0.
3. 1. 0.0019531 1.5625 0. 0.
4. 0. 0. 0. 0. 0.
5. 0. 0. 0. 0. 0.
6. 255. 0.4980469 398.4375 0. 0.
7. 255. 0.4980469 398.4375 0. 0.
MEAN =
133.33333
STD =
184.20089
DIST2 =
199.21875
FITNESS_ALL_PERC1 =
47.959184
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
86.734694
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
POPX =
0. 0. 1.
0. 1. 1.
0. 0. 0.
0. 1. 1.
-->l=3,p=5,n=4,N=128,
MThreshold=N+1,show=2,[FITNESS_ALL_PERC1,DIST2,STD, MEAN, FREQ,STD1,
MEAN1, FREQ1,FX, POP]=ga0(POPX,l,p,n,N, MThreshold,show)
Number of Events n * N = 512
FX =
0. 1. 0.0019531 1.5625 0. 0.
1. 1. 0.0019531 1.5625 0. 0.
2. 0. 0. 0. 0. 0.
3. 510. 0.9960938 796.875 0. 0.
4. 0. 0. 0. 0. 0.
5. 0. 0. 0. 0. 0.
6. 0. 0. 0. 0. 0.
7. 0. 0. 0. 0. 0.
MEAN =
266.14583
STD =
281.58091
DIST2 =
398.4375
FITNESS_ALL_PERC1 =
9.6938776
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347
18.367347