With the scilab function solutionSetApproach(l,n,N,K) one
can take a set
with
many
members of length
with
many events. This can be
repeated
times. For every repetition the number of
events
will be multiplied by
thereby increasing the
number of events.Some empirical results can be seen below.
A first table (and diagram 3.16) shows 20 successive selections of n=32 individuals using N=64 until N=1280 events. While the mean value is mostly around 100% shows the half-distance between the maximum and the minimum of the mean values a decrease from about 19-17% to about 11-12% while increasing the number of events. Similarly shows the standard deviation in percentage a decrease from about 9.5 - 2.8. The 'real' mean values MEAN1 are centered around 0.031 with a standard deviation STD1 from 0.029 running down to 0.0008.
-->l=5, n=32, N=32, K=20, [MDX]=solutionSetApproach(l,n,N,K)
MDX =
N MEAN [%] DIST2 [%] STD MEAN1 STD1
--------------------------------------------------------------------
64. 101.30208 17.1875 9.5991352 0.0316569 0.0029997
128. 99.699519 19.53125 8.8566371 0.0311561 0.0027677
192. 100. 15.364583 8.0806361 0.03125 0.0025252
256. 100.0625 13.476563 6.2994203 0.0312695 0.0019686
320. 99.951923 8.59375 5.5318223 0.0312350 0.0017287
384. 100.20461 7.9427083 4.1850025 0.0313139 0.0013078
448. 99.848214 9.8214286 4.419781 0.0312026 0.0013812
512. 100.49716 8.7890625 4.7191576 0.0314054 0.0014747
576. 99.807099 11.892361 5.4225295 0.0311897 0.0016945
640. 100.07813 6.71875 3.1863929 0.0312744 0.0009957
704. 99.784091 7.2443182 3.228669 0.0311825 0.0010090
768. 100.02325 8.1380208 3.4860207 0.0312573 0.0010894
832. 99.961367 8.8341346 3.4679514 0.0312379 0.0010837
896. 99.946121 5.859375 3.1022874 0.0312332 0.0009695
960. 99.934414 6.6666667 3.04064 0.0312295 0.0009502
1024. 100.10102 4.9804688 2.470903 0.0312816 0.0007722
1088. 100.17398 7.0772059 3.6741721 0.0313044 0.0011482
1152. 99.855324 5.3819444 2.952377 0.0312048 0.0009226
1216. 100. 5.7976974 2.8538176 0.03125 0.0008918
1280. 99.933036 5.0390625 2.8314077 0.0312291 0.0008848
In a last example the number of events has been increased until 12800. One can observe that the one-half difference becomes even more smaller approaching 1.7-2.8% deviance from the mean and the standard deviation runs from 3.3 to about 0.7 - 1.1 (cf. diagram 3.17).
-->l=5, n=32, N=1280, K=10,
[MDX]=solutionSetApproach(l,n,N,K)
MDX =
N MEAN [%] DIST2 [%] STD
---------------------------------------------
1280. 100.18415 6.8359375 3.3885234
2560. 100.08594 3.2421875 1.7525262
3840. 99.927263 2.9817708 1.4970031
5120. 99.945313 3.4960938 1.7487093
6400. 99.972917 3.0703125 1.2020543
7680. 100. 2.0898438 1.0388803
8960. 100.01368 2.4497768 1.021788
10240. 100. 1.4501953 0.8440676
11520. 99.988799 1.7447917 0.7871516
12800. 100.01347 2.8632813 1.1348433
Gerd Doeben-Henisch 2012-03-31