FSL-1.0.1-DOEBEN-HENISCH

Gerd Doeben-Henisch, member PES

The Planet Earth Stmulator Project —
FSL Vers.1.0.1

(Last modified: May-18, 2004, 13:00h)

Abstract—Th is documents describes the FORMAL
SYSTEMS LANGUAGE (FSL) of the PLANET EARTH
SIMULATOR (PES) Project Version 1.0.1. It isdescribesthe 'use
case' of thelanguage aswell asthe grammar and some examples.

Index Terms— modelling real world, simulator, world,
cognitive agents, automated parallel computing, safety critical

INTRODUCTION

The FSLLanguage of the PESProject is a language for
modelling real world processes and cognitive agents.

The FSL is also constructed with real time processing and
automated parallel processing in mind. It also provides basic
mechanisms for the construction of safety critical systems!

The main scenario in mind for the application of the
FSLLanguage can be seen in the following figure.

Knowledge -

Programmer
- (x) £s1
//_’ FSL-
Editor e

SimCognitveAgent

SimWorld

MPI-Protocol

Fig. 1: Main Application Scenario for FSL-Language

A knowledge programmer maps some real world processes
into a logical model, a so called LModel. The language of the

The PES-Project is supported by the Institute for New
Media e.V. in Frankfurt am Main (Germany)

LModel is either 'pure'FSL (suffix .fsl) or an XMLversion
(suffix .xfsl) of the FSLLanguage.

The aid to generate an LModel is some kind of an editor.
This can be an ordinary text editor or some dedicated editor,
e.g. FSL-TEdit or FSL-VEdit. The FSL-TEdit (see [Robert
VIRGA 2004]) is a dedicated text editor which has not only
the text of some LModel 'buffered’ bt it works with the
complete definition of the language in the background, and
with a detailled data structure reflecting all the syntactic
properties of the language. Thus this editor is able to support
the knowledge programmer in a deep way to construct
wellformed LModels. In the future allows this kind of a syntax
driven editor very useful functions (like e.g. the famous GNU-
editor emacs).

FSL-VEdit is a visual editor project which should allow in
the future the construction of an LModel by editing of
graphical symbols (cf. [Gerd DOEBEN-HENISCH 2004b]).

The XMLuversion of FSL will be generated by converting
an .fsl-file into a .xfsl-file. There will be at least one converter
available FSL2XML which will be bidirectional (see [Volker
LERCH 2004]). The FSLVEdit as well as the FSLTEdit will
work with .xfslFiles.

The main ' sers' of LModels are socalled simulators. At the
time of this writing there are two main types of simulators:
SimWorld simulators and SimCognitiveAgent simulators.

A SimWorld simulator takes an LModel as input, parses this
file and generates a SimWorld Data Model. This Data Model
will then be processed by the SimWorld Interpreter. The
interpreter is also communicating with outside clients through
the MPI-Protocol (for the MPI-Protocol see [William GROPP
1999] and [Tom GEHRSITZ 2004]).

A SimCognitiveAgent simulator is structurally similar to a
SimWorld simulator, but there is one component, by which it
differs. The SimCognitiveAgent simulator has additionally a
component called GA representing a strong learning
component (see [Gerd DOEBEN-HENISCH 2004a]. Usually
GA is realized by some genetic Algorithms but this must not
be so; it can be any other mechanism. The strong learning
component takes the Model Data as input and changes these
'slightly’ . Te output is therefore a modified Data Model.

The important point here is that the Data Model in case of
the SimCognitiveAgent simulator is not the logical model of

FSL-1.0.1-DOEBEN-HENISCH

any world process but of those world processes which
describe the structure of cognitive agents as seen by cognitive
psychology and neuro psychology. Thus these Data are
complex dynamical structures representing a weak learning
function (cf. [DOEBENHENISCH 2004a]). It is this twofold
scenario World and CognitiveAgentwhich gives the special
'flavour' 6r the design of the FSL.

THE FSL SURFACE

With the FSL 'SURFACE' wmean the main concepts
which are visible to the user of the FSLlanguage. As in the
object oriented paradigme, where you have classes as the main
concepts around which all the other concepts are organized,
you will have in the FSLlanguage systems as the main
concept.

A system is a structure with a set of inputs /, a set of outputs
0, some internal resources R and a system function F.

SYS(x) iff x = <<I,O,R>, F>
with
F:IxR>RxO

The epistemological assumption behind the FSLlanguage is
therefore, that you can map all processes of the real world
either into one single system or into a system which
recursively contains other systems as elements.

A system can be interpreted in many different ways. Two
special interpretations will be mentioned here because these
are of special importance in the case of the modelling of
cognitive agents: neuron and rule.

Every system can be interpreted as a neuron or a network of
neurons. And because there is no constraint to a certain kind of
neuron you can built every kind of neuron wih this formalism.

Also can a system be interpreted as a rule where the system
inputs are the conditional variables and the system outputs are
the resulting actions.

Clearly is it also possible to map the concept of fuzzy
concepts into the system concept.

Thus the decision to use the FSLIanguage for processing
does not necessarily imply a limitation in expressive power.

More aBoutr USING THE FSL

To use the system concept as central term in the FSL-
language induces some need to decide how to write it. We will
use he following convention:

system sys_name (input parameters ...) [output
parameters ...] sys_body

The input parameters are describing the input of the system
and the output parameters the output. From the outside
nothing else is known of a system than these values! This is
the whole interface. This is different to the class concept in
object oriented modelling. A class can contain methods which
can be called from the outside. This is not possible with
systems. With systems you can only deliver values for input or
you can receive values from output (for the point of
communication between systems see below).

At one side this is a drawback because you can not 'use'
the system from the outside, but on the other side it is a
‘pleasing' because you can capsulate complex machineries
which in turn allows you to ‘cut’ comlex systems easily into
subsystems without any further operations; you only have to
support the exchange of input and output values of the divided
subsystems.

Because it is planned to provide parallel processing of the
simulators in an 'automated fashion' it is especially this feature
of simple 'cutting' complex systems into subsystems which is
very promising for the future applications.

Input parameters as well as output parameters consist of a
finite sequence of parameters. A parameter is understood as a
triple concept:

type par_name unit

A type is a basic data type or a defined data type (like ' nit' ,
'float' ‘bool' p' tsing')A par_name is an identifier. The unit
is a unit like ' gar', 'month' day' etc describing some
measurement unit primarily for time; but it can be extended to
other units of measurement as well.

A special situation arises if there is more than one output
parameter. In this case must the 'value receiver' be of a format
which allows the reception of such values. If e.g. there is a
sequence of output parameters like [int a, float b] then the
receiver must also be a list with two parameters of the same
type. From this follows that the existence of finite sequences
of output parameters presuposes the availability of astruct. A
struct is a list with a fixed set of typed elements.

struct name { typel namel; ... typek namek; };

Another variant would be a typed array of fixed length:

type name[dim];

From this we conclude that a statement like

x = function(pl, ...)[q1, ..., gk];

can only be true if the receiver 'x' has a type which is
conformant with the finite list of output parameters, and this
can only be a struct because only in a struct there is a definite

order of the elements and every element is typed like the
individual output parameter. Thus we presuppose

FSL-1.0.1-DOEBEN-HENISCH

struct x { typel ql; ... typek gk; };

Clearly one could realize this also with a /list, but the concept
of a list is much more ' libral' Wwich induces more
computational load into the actual processing. Thus we will
stay with the more definite concept of a struct especially also
because the input and output of function should be as fixed as
possible with regard to substitutability.

The FSL-language suppports also basic mechanisms for the
construction of reliability and safety informations. This is
done by claiming that every system has to have an automatic
hidden communication of the error status of the delivering
system. The error state is of type struct and has to be defined
as a built in structure. The error state has to be designed in a
way which tells the observer who when which error has to
communicate. The error state is hided from the user but is
automatically processed by the interpreter. In case of errors
will the interpreter write dedicated error-messages to the
console and into a logfile. With this mechanismen a direct and
explicit error handling is possible.

The next point is the distinction between declaration --or
definition-- and calling --or usage--.

Befor some entity can be used within an FSL-system it must
be declared (defined). If an element is declared it can be used
(called). Built-In elements are declared by default. Thus, they
can be used from the beginning.

Which types of elements do exist in the FSL-language? In
version 1.0.1 there are only systemcalls and within systems
can exist besides other systemcalls only states. States are
either simple like

int aA;
float bB;

or they are compound/ complex like
struct aaAA { int X; float Y; struct bbBB { ... }; };
struct aaAA name[100];

If there is a systemcall of a system s1 which is not based on
a builtin system then there must exist somewhere outside the
system which contains the call of system sl a
systemdeclaration of system s1. Thus

sysgen (a)[b]{
sysspecial(str)[bbb]; ... }

system sysspecial (string str)[string bbb]{ }

Systems occuring as systemcalls within other systems are
called subsystems or embedded systems. Embedded systems
receive their input from the surrounding system and they
deliver their outputs to the surrounding system.

embedded systems

Fig. 2: Embedded systems in surrouding system

The set of systemcalls can further be divided into ordinary
system calls and into mefa system calls.

Meta system calls like

if{ condition)[]{...}
if{ condition)[]{...} else { }
while(condition)[]{ ... }

are formally system calls but they function like a switch. If
the condition has the boolean value frue then the system calls
in the curley brackets will be executed; otherwise, if the value
of the condition is false then the system calls in the following
brackets will not be activated. Thus in the case of an ordinary
system call there is always an execution not so in the case of
the meta system calls.

Conditions can be expressions which can be computed with
regard to a boolean value. This is only possible if one uses
either states with a boolean value or system calls with a single
boolean value as output parameter. Examples of such boolean
system calls are:

less(x,y)[]; --- also written (x <y) ---
equal(x,y)[]; --- also written (x ==y) ---
greater(x,y)[]; --- also written (x > y) ---

lequ(x,y)[]; --- also written (x <=y) ---
gequ(x,y)[]; --- also written (x > =y) ---
efc.

FSL-1.0.1-DOEBEN-HENISCH

INPUT-OUTPUT COMMUNICATION

An important and not quit simple task is the inclusion of
some input-output operations.

Knowledge-—
Programmer

*

File

(:m mOoHaAp+nIONZH

Fig. 3: Use case for input-output communication

To understand the problem one has to consider the
applicatoon scenario for input-output in the case of the PES-
simulators.

The usual case will be that a human user starts a simulator
for a certain topic. In most cases the LModel for that topic is
parametrized, i.e. before starting the processing of the LModel
process the LModel will ask for some values which will by
used as parameters to shape the intended process in the light
of the user' sntention.

As discussed in the PES-team during April 2004 it should be
the duty of the PES Simulation Control (SC) Server to interact
with the user in a way that after the selection of an appropriate
LModel for simulation the SC will automatically ask the user
for all initial values needed for the start of the LModel.

The result of these negotiations with the user is an
simulation contract (SimCon) which contains all these
informations and wich will be delivered to the simulator
immediately after starting the process.

This assumption will work if one presupposes that the
interpreter of the simulator takes the simCon and delivers all
needed values to the program. In this case one could assume
that the startup parameters are coded as input parameters of
the root-system.

A quite different situation is given when during the
simulation process some information is needed from the
outside of the system or some sensors from the outside have
actual information which has to be transmitted to the system.
How can this be handled?

Within the PES-Project there is only one answer: by

communication! The interchange of information between
system will be handled by communication which is realized by
sending and receiving messages!

As mentioned before will the PES-Project in the first phase
use the MPI-Protocoll as framework for these communications
between systems, at least between the different types of
simulators. The Cluster Manager (CM) functions here as a
kind of Master and as a gateway of the MPI-Protocoll Area
into other communnication protocols (see [Tom GEHRSITZ
20047).

Thus the only mechanisms which are needed within an
LModel are at least two functions:

send()[];

receive()[];

The question is what kind of parameters these functions do
need. For version 1.0.1 we assume the following format of the
string, which is the only input parameter of the send()[]- and
receive()[]-call:

< ?xml version="1.0" encoding="is0-8859-1"?>
<!-- $1d$ -->
<Command>
<Source>0</Source>
<Destination> 1 </Destination>
<Type>ActionString</Type>
<Parameter>ValueString</Parameter>
<Timestamp>2004/05/16 10:00:03</TimeStamp>
</Command>

The system call for the receive action presuppoeses that
there exists a dedicated managed queue for incoming
messages which can be read ' awvill' all the time.

Wheras the sending-action can actively be started by a
system is the receiving-action somehow 'passively’ ;the
receiver can only wait and then, when some message arrives
can the receiving system read the received message. What is
needed here is some kind of an event system which triggers the
waiting system.

Seen from the perspective of real time systems which have
to be reliabel and safety it could be necessary to force the
system into a deterministic scheduling of evaluating some
message queue regularily! This would imply the installation of
a deterministic loop with a transparent timing behaviour.

In the case of Safety Critical Systems (including Real Time
Systems) it is necessary to include the mechanisms of the used
communication protocol into the design of the whole system --
not to forget the interpreter, which is doing the main job of
processing--.

In Version 1.0.1 of the FSL we will assume a simple

FSL-1.0.1-DOEBEN-HENISCH

schedukling-based version of the usage of send()[] and
receive()[]. This means that the programmer of an LModel can
place send()[] and eceive()[] like ordinary built-in system
calls everywhere in his LModel.

MEMORY MANAGEMENT

As in nearly all programming languages there exists also in
the FSL-language some need for a dynamic memory
management. At some time during the processing of an
LModel it can happen that an event claims for some memory
to store data.

Usually the memory management system call needs to
know what type of data has to be stored and how many items
should be reserved. And then it will return some kind of an
adress or pointer to this new item.

Seen from the usage of the language it would be most
comfortable for the user that he/she had not to worry about the
details of memory management. The most simple behaviour
would be that within the LModel at any time it would be
possible either to introduce a new state or to change an
already existing state.

Thus like in the case of an array it should be possible either
to declare a certain dimension in the beginning

int arrayl[5];
or to let it unspecified
int array2[];

and then during the process use the array as necessary, i.e. if
you add an item which is not already there it will
automatically be added and if the item is already there then it
will be overwritten.

This automatic handling of memory handling would deliver
the control of the correct usage of the memory to the
interpreter. This would exclude possible memory errors like
in languages as C and C++. If there would not enough
memory be available then the system should not execute the
operation and generate an memory exception event!

This automatic handling of the memory should apply also
to strings but probably not to structs.

The only way to hinder a dynamic modification of a state
should be to use an additional keyword const to signal that this
state should always keep his values fixed.

Adding of items then could be managed as follows:

Given some array and some string:

int arrayl[5];

float array2[];

str L1 = "Hallo World!";
strL2;

one could add items as follows:
arrayl[6] = 200;

This adds a new item at position 6 of the array, i.e. the array
must automatically be extended.

array2[3] = 7.345;
This overrides the item at position 3 with a new item.
arrayl[2] = 20;

This adds a new item because the original string had no
item.

concat(L1," This is an extension.")[];

This extends the old string by concatenating a new sring at
the end of the old one.

subst(L2,3,5,"XXXX")[];

This replaces the symbols at positions 3-5 in the old string
by a new string "XXXX" by the subst()-call. The result should
look like this:

"HaXXXX World!"
L2 = "Any string can be replaced.";

Direct assertion replaces the old value completely by a new
value.

SYSTEM ARGUMENTS

BY VALUE or BY REFERENCE?

As known from languages like C and C++ it is possible to
pass a reference to a state instead of making a copy of the
whole data structure.

Calling by reference has some advantage, at least you will
need less memory space and it is usually faster.

If more than one process can operate on the same data
structure --which can happen in the case of FSL with parallel
processing-- then a call by reference from more than one
subsystem can lead to conflicting operations.

FSL-1.0.1-DOEBEN-HENISCH

If in the future indeed certain subtasks can be cutted from
the parent tasks for processing on concurren processes then it
could be an advantage that every subprocess has its own copy
of the datastructure. Then every subprocess could operate
independently on the other concurrent processes.

But also in this ' cpy-case' there could arise a conflict if
different concurrent subsystems would operate on the same
piece of data structure. It would e necessary to have some kind
of merging procedure.

If one would work with calling by reference and one would
try to solve concurrent processing by sending messages then
would this kind of procedure mimic the situation of having
only one single process thus giving up the advantage of having
distributed concurrent processes running.

Therefore, as long as one can assume one single processing
unit it is more advantegeous to use call by reference. If there
are concurrent processes it could be of help to have call by
value with the need of monitoring possible differences
between shared portions of the data structure.

Otherwise, if one votes for calling be reference and one
would allow the distribution of processes then it would be
anyhow necessary that the difeerent distributed processes will
communicate by messages. A communication of the values of
a referenced data structure by messages would then not induce
a quite new mechanism. There would be remain the need for a
monitoring of concurrent operations.

Thus for FSL 1.0.1 we will assume the possibility to use
both: call by value and call by reference.

sysany(&A,B)[];

The system call with sysany()[] calls the variable A by
reference and the variable B by value.

EXAMPLE Nr.1

Lets have a look to an example of an LModel which
describes a simple SimWorld simulator simulating a simple
world for possible inhabitants.

System sys1 establishes some datastructures and then starts
a loop within which it calls repeatedly the queue of incoming
messages with the receive() call.

Depending from the commands which will be found in the
incoming string it will process these different commands. In
the example there are only four commands ' Igin' , dgout'
‘move' and ' &' which will each be processed by a special
system ' Iginsys()', 'dgoutsys()' etc. At the end of each
processing is always a send()-call to inform the client about
the reaction of the system.

What this figure also shows is the layout of the implicit
tree-structure of a LModel. There is only one root-system with
input and output. This root-system can recursively have other
sub-systems. Processing is from the root to the ' chdren' and
back from the children to the root. Between the different
systems only values are communicated.

system sysl () []
while () [1

(loginsys () [1;)H(receive () [1 Ve ‘(eatsys () [1;)
C logoutsys () [1:) (movesys () [1;)

loginsys parse() [] eatsys_parse () [1

loginsys_evaluation() [] eatsys_evaluation() []

loginsys_ synthese () [] eatsys_synthese () []

send () [] send () [1

logoutsys_parse () []
logoutsys_evaluation() []
logoutsys_synthese () []
send() []

movesys_parse() []
movesys_evaluation () []
movesys_synthese () []
send () [1

Fig. : Simultor simulating a simple world by system sys1

REFERENCES

(not finished; preliminary)

Francis COTTET/ Joelle DELACROIX/ Claude KAISER/
Zoubir MAMMERI [2002], "Scheduling in Real-Time
Systems", John Wiley & Sons, Chichester (Engl.) et al.

Gerd DOEBEN-HENISCH [2004a], ‘Simulation of
Knowledge”, Seminar conducted during the summer term
2004, University of Applied Sciences Frankfurt am Main
(Germany), URL: http://www.tbmnd.th-
frankfurt.de/~doeben/IS/SIMULATION-WISSEN/is-
simwissen-header.html

Gerd DOEBEN-HENISCH [2004b], "The Planet Earth
Simulator Project — First Considerations to the Visual
Programming Interface of the Formal Systems Language",
Draft Paper, Planet Earth Simulator Project

Tom GEHRSITZ [2004], Clustermanager based on the
MPI-protocol, Dipl.Thesis

William GROPP/ Ewing LUSK/ Anthony SKJELLUM
[1999 2™ ed.], “Using MPIL. Portable Parallel Programming
with the Message-Passing Interface”, Cambridge-London:
MIT Press

Volker LERCH [2004], FSL2XML (Dipl.Thesis)

FSL-1.0.1-DOEBEN-HENISCH

Neil Storey [1996], "Safety-Critical Computer Systems",
London - New York et al:Prentice Hall (Pearson Education)

Robert VIRGA [2004], FSL-TEdit (Dipl.Thesis)

