
Programming with Python
Part 3

Different Behavior Functions for Experiments
1-4

emerging-mind.org eJournal ISSN 2567-6466
(info@emerging-mind.org)

Gerd Doeben-Henisch
gerd@doeben-henisch.de

October 18, 2017

Contents

1 Problem to be Solved 1

2 How to Program 2
2.1 Empty Behavior Function . 2
2.2 Fixed Behavior Function . 7
2.3 Random Behavior Function 10
2.4 Food-Intake Function . 11

Abstract

According to the actual requirements we have to prepare 4 differ-
ent types of behavior functions.

1 Problem to be Solved

In part 2 we have mentioned the following 4 types of behavior functions
which we need:

1. The behavior function φ of the actor is ’empty’ φ = ∅. The actor
functions like an ’envelope’: you can see the body of the actor on the
screen, but his behavior depends completely from the inputs given by
a human person.

1

2. The behavior function φ of the actor is driven by one, fixed rule φ(i) =
const. The actor will do always the same, independent from the envi-
ronment.

3. The behavior function φ of the actor is driven by a source of random
values; therefore the output is completely random φ(i) = rand.

4. The behavior function φ of the actor is driven by a source of random
value but simultaneously the actor has some simple memory µ re-
membering the last n steps before finding food. Therefore the behav-
ior is partially random, partially directed depending from the distance
to the goal food: φ : I × IS 7−→ IS × O with internal states IS as
a simple memory which can collect data from the last n-many steps
before reaching the goal. If the memory µ is not empty then it can
happen, that the actual input maps the actual memory-content and
then the memory gives the actor a ’direction’ for the next steps.

In this part 3 we will program the cases 1-3 and we will implement a
food-intake function which will increase the energy level again.

2 How to Program

After replacing all console interactions in part 2 we will now realize the four
different types of behavior functions using only graphical interactions. Then
we will include the ’food-intake function’.

2.1 Empty Behavior Function

The first type of required behavior is an empty behavior function φ written
as φ = ∅. In this case the actor is functioning like an ’envelope’: you can
see the body of the actor on the screen, but his behavior depends com-
pletely from the inputs given by a human person.

There are two options: (i) having keystrokes determine the direction or
(ii) having mouse clicks directly in the grid.

Using keystrokes is a bit cumbersome, but has the great advantage in a
public performance that the audience has a full control what the performer
on stage are doing. Therefore we select this option for programming.

As we could see in the case of the introduction of the actor one can
click into the grid and then one can easily identify the position. Thus we
can copy this procedure and modify it as necessary.

2

For the details of all three source code files see the ZIP-Folder of the
files attached to the post.

Here we discuss only the new empty behavior function with the name
’behaviorAcEmpty(e,a,win)’.

The new code starts in the ’MENTAL’ part.

A text message is printed in the window to point to some neighboring
cell to give a hint for a new direction. Then the window coordinates of this
point with the mouse are evaluated and translated in the coordinates of the
data array. Then given the old coordinates and the new coordinates the
resulting new direction is computed and written in the actor object (which
serves as the interface between the world managed in main() and the ac-
tor. Then the main() function computes the resulting move and computes
possible obstacles.

def behaviorAcEmpty(e,a,win):

import numpy as np

import environment as env

import acctor as acc

import graphics as grph

#BODY PART

Compute time since last call and change energy level

name = a.getName()

t1 = a.getTime()

t2 = e.getClock()

erate = a.getEnergyRate()

ener = a.getEnergy()

dt = t2-t1

energynew = ener - (erate * dt)

a.setEnergy(energynew)

print(PID+’Actor ’,name,’ has new energy level = ’,energynew)

#MENTAL PART

Determine the new direction

#Let the user click on a cell beside the actual position and determine

3

the direction

message = grph.Text(grph.Point(140, 15), "Click in neighbouring cell for NEW DIRECTION")

message.setTextColor(’red’)

message.draw(win)

Get and draw the coordinate of a point

pdir = win.getMouse()

xc=pdir.getX()

yc=pdir.getY()

print(PID+’P for new direction ’,pdir,(xc,yc))

#Hide the Text

message2 = grph.Text(grph.Point(140, 15), "Click in neighbouring cell for NEW DIRECTION")

message2.setTextColor(’HoneyDew’)

message2.draw(win)

#Transform the window coordinates into the array coordinates

xs = int(xc/100)

ys = int(yc/100)

x = xs+1

y=ys+1

print(PID+’P for new direction in Array ’,(x,y))

#compute the resulting direction rDir

#Getting the old position

p=a.getPos()

print(PID+’Old Position of Actor = ’,p)

xold=p[0]

yold=p[1]

if xold == x:

print(PID+’xold = x points to dir 1,3’)

if yold < y:

dirnew = 3

print(PID+’dir = ’,dirnew,(xold,yold),(x,y))

else:

dirnew = 1

print(PID+’dir = ’,dirnew,(xold,yold),(x,y))

elif yold == y:

print(PID+’ yold = y points to dir 2,4’)

if xold < x:

4

dirnew = 2

print(PID+’dir = ’,dirnew,(xold,yold),(x,y))

else:

dirnew = 4

print(PID+’dir = ’,dirnew,(xold,yold),(x,y))

else:

print(PID+’ERROR with DIRECTION !!!’)

dirnew = a.getDir()

print(PID+’Error Dirnew ’,dirnew)

a.setDir(dirnew)

print(PID+’New direction of actor ’,name, ’ is = ’,dirnew)

a.setOutputMessage(’yesMove’)

print(PID+’actor ’,name, ’wants to move’)

The following text shows the beginning and the end of the console print-
outs. It ends with the dead of the actor because there is not yet a food-
intake function implemented.

All printouts have in the beginning acronyms ’ACC’, ’MAIN’ or ’ENV’
pointing to the file where they have been printed. This is helpful for ’logical
debugging’.

The acronyms are automatically generated by using a string variable at
the beginning of a file (like PID=”MAIN: ”) which is included in every print-
statement like print(PID+ ...).

MAIN: P Point(336.0, 67.0) (336.0, 67.0)

MAIN: Center Array (4, 1)

MAIN: MAP OF ARRAY

MAIN: [[0 0 0 1 1 1 0]

[1 0 0 1 0 2 0]

[1 0 0 0 0 0 0]

[3 0 0 0 0 1 0]

[0 0 0 0 0 0 0]

[0 0 0 0 0 0 0]

[0 0 0 0 0 1 0]]

MAIN: ATTENTION: Columns represent Rows on screen!

ACC: Actor A1 has new energy level = 2000

ACC: P for new direction Point(336.0, 161.0) (336.0, 161.0)

5

ACC: P for new direction in Array (4, 2)

ACC: Old Position of Actor = (4, 1)

ACC: xold = x points to dir 1,3

ACC: dir = 3 (4, 1) (4, 2)

ACC: New direction of actor A1 is = 3

ACC: actor A1 wants to move

MAIN: New Position planned = 3

MAIN: Actual Position = (4, 1)

ENV: Inside Newposition - dir,xold,yold 3 4 1

ENV: dir 3

MAIN: New Position planned = (4, 2)

MAIN: actor = A1 will move

ENV: Type = 3 has moved to (4, 2)

MAIN: actor = A1 has moved

MAIN: Environment Time = 0

MAIN: Actual Environment Time = 0

MAIN: New Environment Time = 1

ACC: Actor A1 has new energy level = 1998

...

ACC: Actor A1 has new energy level = -70

ACC: P for new direction Point(267.0, 631.0) (267.0, 631.0)

ACC: P for new direction in Array (3, 7)

ACC: Old Position of Actor = (2, 7)

ACC: yold = y points to dir 2,4

ACC: dir = 2 (2, 7) (3, 7)

ACC: New direction of actor A1 is = 2

ACC: actor A1 wants to move

MAIN: New Position planned = 2

MAIN: Actual Position = (2, 7)

ENV: Inside Newposition - dir,xold,yold 2 2 7

ENV: dir 2

MAIN: New Position planned = (3, 7)

MAIN: actor = A1 will move

ENV: Type = 3 has moved to (3, 7)

MAIN: actor = A1 has moved

MAIN: Environment Time = 45

MAIN: Actual Environment Time = 45

MAIN: New Environment Time = 46

MAIN: ATTENTION: Actor A1 has no more Energy!!!

MAIN: THE GAME SAYS GOODBYE!

6

2.2 Fixed Behavior Function

If an actor shows a fixed behavior φ(i) = const then the actor will act always
in the same way, independent from the environment.

For this case many variants are conceivable. We select here the case,
that the actor continues to go in one direction until he hits an obstacle. In
this case he will change the direction either in a right-hand manner +1 or in
a left-hand manner -1, but not alternating. Thus we have a left-hand type
of an actor or a right-hand type. We select here the right-hand type (clock-
wise).

To enable such a fixed behavior the actor needs a minimal feedback
from the environment. Such a minimal feedback is already provided by the
environment manager through the mechanism of the Input-Message in the
actor object. Every time the environment manager detects an obstacle then
he writes this as a feedback into the InputMessage buffer.

Thus the actor gives as his new direction always the old direction as
long as the getInputMessage() does not show the value ’NoMove’. If this
feedback shows up then the actor has to change his direction in a fixed
manner.

def behaviorActFix(e,a):

import numpy as np

import environment as env

import acctor as acc

import math

#BODY PART

Compute time since last call and change energy level

name = a.getName()

t1 = a.getTime()

t2 = e.getClock()

erate = a.getEnergyRate()

ener = a.getEnergy()

dt = t2-t1

energynew = ener - (erate * dt)

a.setEnergy(energynew)

7

print(PID+’Actor ’,name,’ has new energy level = ’,energynew)

#MENTAL PART

#Determining the new direction

dirnew = a.getDir()

#Checking for feedback. If ’NoMove’ then change direction

f = a.getInputMessage()

print(PID+’Input Message from ENV ’,f)

if f == "NoMove":

print(PID+’Identification of -NoMove- happened’)

dirold = a.getDir()

dirnew = dirold + 1

if dirnew > 4:

dirnew = dirnew % 4

print(PID+’dirold, dirnew if >4 ’,dirold, dirnew)

Determine the new direction

a.setDir(dirnew)

print(PID+’New direction of actor ’,name, ’ is = ’,dirnew)

a.setOutputMessage(’yesMove’)

print(PID+’actor ’,name, ’wants to move’)

The beginning of the console log-data shows how the program works.

MAIN:

P Point(150.0, 349.0) (150.0, 349.0)

MAIN:

Center Array (2, 4)

MAIN:

MAP OF ARRAY

MAIN:

[[0 0 0 0 1 0 1]

[1 0 0 3 1 0 0]

[0 2 0 1 0 0 0]

[0 0 0 0 0 0 0]

[0 0 0 0 0 0 0]

[0 0 0 1 0 0 0]

8

[0 0 0 1 1 0 0]]

MAIN:

ATTENTION: Columns represent Rows on screen!

ACC:

Actor A1 has new energy level = 2000

ACC:

Input Message from ENV NoMove

ACC:

Identification of -NoMove- happened

ACC:

New direction of actor A1 is = 2

ACC:

actor A1 wants to move

MAIN:

New Position planned = 2

MAIN:

Actual Position = (2, 4)

ENV:

Inside Newposition - dir,xold,yold 2 2 4

ENV:

dir 2

MAIN:

New Position planned = (3, 4)

MAIN:

actor = A1 has hit an obstacle

MAIN:

Environment Time = 0

MAIN:

Actual Environment Time = 0

MAIN:

New Environment Time = 1

ACC:

Actor A1 has new energy level = 1998

ACC:

Input Message from ENV NoMove

ACC:

Identification of -NoMove- happened

ACC:

New direction of actor A1 is = 3

ACC:

actor A1 wants to move

MAIN:

New Position planned = 3

9

MAIN:

Actual Position = (2, 4)

ENV:

Inside Newposition - dir,xold,yold 3 2 4

ENV:

dir 3

MAIN:

New Position planned = (2, 5)

MAIN:

actor = A1 has hit an obstacle

MAIN:

Environment Time = 1

MAIN:

Actual Environment Time = 1

MAIN:

New Environment Time = 2

ACC:

Actor A1 has new energy level = 1994

ACC:

Input Message from ENV NoMove

ACC:

Identification of -NoMove- happened

ACC:

New direction of actor A1 is = 4

ACC:

actor A1 wants to move

MAIN:

New Position planned = 4

MAIN:

Actual Position = (2, 4)

2.3 Random Behavior Function

The random behavior function is driven by a source of random values;
therefore the output is completely random φ(i) = rand.

To adapt the program for this version it is only necessary to rewrite the
actor function of the file ’acctor.py’ as ’behaviorAcRand(e,a)’.

As You can see in the source code below one needs only a random
generator for one of the four possible directions {1, ..., 4}

def behaviorAcRand(e,a):

10

import numpy as np

import environment as env

import acctor as acc

#BODY PART

Compute time since last call and change energy level

name = a.getName()

t1 = a.getTime()

t2 = e.getClock()

erate = a.getEnergyRate()

ener = a.getEnergy()

dt = t2-t1

energynew = ener - (erate * dt)

a.setEnergy(energynew)

print(PID+’Actor ’,name,’ has new energy level = ’,energynew)

#MENTAL PART

Determine the new direction

dirspace = 4

dirnew = np.random.randint(1,dirspace+1) <----- Random generator

a.setDir(dirnew)

print(PID+’New direction of actor ’,name, ’ is = ’,dirnew)

a.setOutputMessage(’yesMove’)

print(PID+’actor ’,name, ’wants to move’)

2.4 Food-Intake Function

The idea of the food-intake function is as follows: if an actor has reached in
the grid a cell immediately besides a food cell which has a border in com-
mon than we assume (in the simple case) that the actual level of energy will
be increased by a certain pre-defined amount of energy associated with the
food. In later versions this can become much more sophisticated.

The mechanism is a an interaction between the environment manager
and the actor. If the environment manager recognizes a food-object im-
mediately besides an actor than the environment manager writes in the
’intake’ Buffer from the actor, the amount of energy, which is associated
with the food-intakte. It depends then from the actor, whether he will take

11

the notice and uses it. The normal way will be – as assumed here – that
the actor will take the food and increases thereby his energy level.

To enable this new interaction between actor and environment we have
changed the class acctor.py a bit (see for the full code the attached zip-
file).(See for instructions to python classes the python tutorial [pyt17])

We have generated a small list of internal variables, which can be reached
by class methods:

class ACTOBJ:

"""This is a first sketch for an actor class. It has to be developed further """

type = ’actor’

inpMsg =’’ #Message from the environment

OutMsg = ’’ #Message to the environment

intake = 0 #Energy Offer with food

...

def setInputMessage(self,inputMessage):

#Some message to the environment

self.inpMsg=inputMessage

def getInputMessage(self):

return self.inpMsg

def setIntake(self,intake):

#Some message from the environment to the actor

self.intake=intake

def getIntake(self):

return self.intake

Then we have added to the fixed behavior function ’behaviorActFix(e,a)’
a passage where the actor checks whether there is some possible food-
intake nearby. If yes, then he adds this offered energy to his energy level
and sets the intake parameter back to zero.

def behaviorActFix(e,a):

import numpy as np

import environment as env

import acctor as acc

import math

12

name = a.getName()

#BODY PART

#INTAKTE OF FOOD IF AVAILABLE

f = a.getIntake()

if f > 0:

eold = a.getEnergy()

enew = eold + f

a.setEnergy(enew)

a.setIntake(0) #Set value back to zero

print(PID+’Actor ’,name,’ has increased ENERGYLEVEL = ’,enew)

On the part of the environment manager there has to be changed only
the section where the actor hits an obstacle. If this obstacle will be rec-
ognized as ’FOOD’ then the environment manager will give the actor an
intake-message which offers the amount of energy which can be part of
the actor, if he wants.

Err, xnew, ynew = env.newPosition(dirnew,xold,yold)

if Err == -1:

print(PID+’Err = ’, Err)

else:

print(PID+’New Position planned = ’, (xnew,ynew))

if gr2[xnew-1,ynew-1] != 0:

#Telling the actor that the planned new position is occupied

a1.setInputMessage("NoMove") <----- Obstacle

print(PID+’actor =’,name,’ has hit an obstacle at ’,xnew,ynew)

if gr2[xnew-1,ynew-1] == 2:

print(PID+’actor =’,name,’ has hit FOOD’)

a1.setIntake(1000) <----- Recognition of Food

else:

type=3 #actor

#First change position in data array

print(PID+’actor =’,name,’ will move in Array’,xnew,ynew)

env.moveArray(type,xold,yold,xnew,ynew,gr2)

#Tell the actor his new position

a1.setPos(xnew,ynew)

#Next change position in window

13

print(PID+’Inserting actor at’, xnew,ynew)

env.introduceActor(xnew,ynew,dir,name,color,energy,distance,win)

env.deleteActor(p,win)

a1.setInputMessage(’YesMove’)

print(PID+’actor =’,name,’ has moved’)

else:

print(PID+’No move wanted by actor.’)

The text below shows the beginning of a console-log text. There was an
array with food in the 3rd row at (0,2) in the data array and (1,3) in the win-
dow grid. The actor started at the (0,6) array position (i.e. (1,7) window grid
position). The actor moved towards the food, got the message from the en-
vironment manager that there is food-presence with ’1000’ energy points,
the actor recognized this and increased his energy level by this amount.

MAIN:

P Point(59.0, 652.0) (59.0, 652.0)

MAIN:

Center Array (1, 7)

MAIN:

MAP OF ARRAY

MAIN:

[[0 0 2 0 0 0 3]

[0 0 0 0 0 1 0]

[0 0 0 0 0 0 0]

[1 0 1 0 0 1 0]

[0 0 0 0 0 0 0]

[0 1 0 0 0 0 0]

[1 0 0 0 0 0 0]]

MAIN:

ATTENTION: Columns represent Rows on screen!

ACC:

Actor A1 has new energy level = 2000

ACC:

Input Message from ENV

ACC:

New direction of actor A1 is = 1

ACC:

actor A1 wants to move

MAIN:

New Position planned = 1

14

MAIN:

Actual Position = (1, 7)

ENV:

Inside Newposition - dir,xold,yold 1 1 7

ENV:

dir 1

MAIN:

New Position planned = (1, 6)

MAIN:

actor = A1 will move in Array 1 6

ENV:

Type = 3 has moved to (1, 6)

MAIN:

Inserting actor at 1 6

MAIN:

actor = A1 has moved

MAIN:

Environment Time = 0

MAIN:

Actual Environment Time = 0

MAIN:

New Environment Time = 1

ACC:

Actor A1 has new energy level = 1998

ACC:

Input Message from ENV YesMove

ACC:

New direction of actor A1 is = 1

ACC:

actor A1 wants to move

MAIN:

New Position planned = 1

MAIN:

Actual Position = (1, 6)

ENV:

Inside Newposition - dir,xold,yold 1 1 6

ENV:

dir 1

MAIN:

New Position planned = (1, 5)

MAIN:

actor = A1 will move in Array 1 5

ENV:

Type = 3 has moved to (1, 5)

15

MAIN:

Inserting actor at 1 5

MAIN:

actor = A1 has moved

MAIN:

Environment Time = 1

MAIN:

Actual Environment Time = 1

MAIN:

New Environment Time = 2

ACC:

Actor A1 has new energy level = 1994

ACC:

Input Message from ENV YesMove

ACC:

New direction of actor A1 is = 1

ACC:

actor A1 wants to move

MAIN:

New Position planned = 1

MAIN:

Actual Position = (1, 5)

ENV:

Inside Newposition - dir,xold,yold 1 1 5

ENV:

dir 1

MAIN:

New Position planned = (1, 4)

MAIN:

actor = A1 will move in Array 1 4

ENV:

Type = 3 has moved to (1, 4)

MAIN:

Inserting actor at 1 4

MAIN:

actor = A1 has moved

MAIN:

Environment Time = 2

MAIN:

Actual Environment Time = 2

MAIN:

New Environment Time = 3

ACC:

Actor A1 has new energy level = 1988

16

ACC:

Input Message from ENV YesMove

ACC:

New direction of actor A1 is = 1

ACC:

actor A1 wants to move

MAIN:

New Position planned = 1

MAIN:

Actual Position = (1, 4)

ENV:

Inside Newposition - dir,xold,yold 1 1 4

ENV:

dir 1

MAIN:

New Position planned = (1, 3)

MAIN:

actor = A1 has hit an obstacle at 1 3

MAIN:

actor = A1 has hit FOOD

MAIN:

Environment Time = 3

MAIN:

Actual Environment Time = 3

MAIN:

New Environment Time = 4

ACC:

Actor A1 has increased ENERGYLEVEL = 2988

ACC:

Actor A1 has new energy level = 2980

...

References

[pyt17] python. classes. 2017. https://docs.python.org/3/tutorial/classes.html?highlight=classes.

17

