
Programming with Python
Part 2

Replacing console interactions by mouse-click
events

emerging-mind.org eJournal ISSN 2567-6466
(info@emerging-mind.org)

Gerd Doeben-Henisch
gerd@doeben-henisch.de

October 16, 2017

Contents

1 Problem to be Solved 1

2 How to Program 2
2.1 Continuation with Timer instead of Console Interaction; Quit . 2
2.2 Inserting an Actor by Mouse-Click 3
2.3 Putting Things Together . 6

Abstract

Taking the proposal from Part 1 for an environment-actor demo
and enhance it with replacing all console interactions with mouse-click
events.

1 Problem to be Solved

Having a first sketch for a simple environment and a simple input-output
system as an actor we want now introduce a graphical systen interface
(GSI) of the program for the user.

We take as a starting point the requirements from the concert in Ham-
burg wich will happen at November-9, 2017 in the evening.

1

We have the following experimental setups:

1. The behavior function φ of the actor is ’empty’ φ = ∅. The actor
functions like an ’envelope’: you can see the body of the actor on the
screen, but his behavior depends completely from the inputs given by
a human person.

2. The behavior function φ of the actor is driven by one, fixed rule φ(i) =
const. The actor will do always the same, independent from the envi-
ronment.

3. The behavior function φ of the actor is driven by a source of random
values; therefore the output is completely random φ(i) = rand.

4. The behavior function φ of the actor is driven by a source of random
value but simultaneously the actor has some simple memory µ re-
membering the last n steps before finding food. Therefore the behav-
ior is partially random, partially directed depending from the distance
to the goal food: φ : I × IS 7−→ IS × O with internal states IS as
a simple memory which can collect data from the last n-many steps
before reaching the goal. If the memory µ is not empty then it can
happen, that the actual input maps the actual memory-content and
then the memory gives the actor a ’direction’ for the next steps.

2 How to Program

We will first replace every console input by an interaction with the graphic
window.

There are the following console interactions to be replaced:

1. Asking for step-wise continuation during the program run

2. Asking for the position of the actor in the beginning

3. Quitting the whole program at the end

2.1 Continuation with Timer instead of Console Interaction;
Quit

It will give more comfort in the usage of the program when the continuation
will happen ’by the program itself’ and not by asking every time for a con-
tinuation. This can easily be implemented with the python-timer function

2

’sleep(n)’ for n-many seconds. The new program looks like the preceding
program ’gdh-win10.py’ with only a small change here:

-*- coding: utf-8 -*-

"""

Created on Mon Oct 16 08:19:31 2017

@author: gerd doeben-henisch

Extend the program gdh-win10.py by a timer-mechanism for automatic

continuation of the event-loop

"""

Program: gdh-win11.py

def main():

import graphics as grph #Graphics objects from Zelle

import environment as env #Functions to generate grids

import numpy as np #numerical library numpy

import acctor as acc #Acctor related functions

import time as tm #Timer library <----- New

....

energy=a1.getEnergy()

if energy <0:

print(’ATTENTION: Actor ’,label,’ has no more Energy!!!’)

FINISH=-1

#Continuation delayed by the timer function

tm.sleep(2) #python timer , sleep n secs

<----- in the original source is here an indent which marks the end of the while-event loop!

print(’THE GAME SAYS GOODBYE!’)

tm.sleep(10)

win.close()

main()

The new ’end’ of the program run has additionally been changed by
taking into account if the actor has died on account of loosing all his energy.

2.2 Inserting an Actor by Mouse-Click

In the following code example we are using the settings from the last main
program ’gdh-win10.py’ for the generation of a graphics window with a grid.

3

Then we allow a mouse-click interaction for the position of the new actor.
The window coordinates of the mouse-click event will be adjusted to the
underlying grid and then the actor will be inserted and shown.

If the actor will be place on the cell of an obstacle the obstacle is deleted
by this insertion.

If the actor would coincide with a food then the food is gone.

-*- coding: utf-8 -*-

"""

Created on Mon Oct 16 08:19:31 2017

@author: gerd doeben-henisch

Transforming an example of Johen Zelle (2002)

for usage in the environment-actor project

"""

Program: gdh-environment-actor-inserted.py

import graphics as grph

import environment as env

import numpy as np

def main():

#Star a graphics window for the environment

xmax = 700

ymax = 700

win = grph.GraphWin(’ENVIRONMENT 1’, xmax, ymax)

win.setBackground(’HoneyDew’)

#State some values for the parameters for a grid in the graphics window

first = 1 #First element of the list

last = 7 # Last element of the list used

distance = 100 #distance of two lines in the grid

maxXcoord = 7 #size of the data array in the background

maxYcoord = 7

nobj = 20 #objects: percentage of the array space !

nfood = 1 #food: percentage of the array space !

4

#generating the lines of the grid

env.grid(win,xmax, ymax, first, last, distance)

message = grph.Text(grph.Point(80, 15), "Click on one point")

message.draw(win)

Fill the grid with spaces and objects

gr2=env.fillgridobj2(win,first, last, maxXcoord,maxYcoord,nobj)

Fill the grid with food

gr2=env.fillgridfood(win,first, last, maxXcoord,maxYcoord,nfood,gr2)

Get and draw the coordinate of a point

p1 = win.getMouse()

p1.draw(win)

x=p1.getX()

y=p1.getY()

print(’P1 ’,p1,(x,y))

#Transform the window coordinates into the array coordinates

xs = int(x/100)

ys = int(y/100)

print(’Center Array ’,(xs+1, ys+1))

#neutralize cell on window to delete a possible obstacle

rect1 = grph.Rectangle(grph.Point(xs*100,ys*100), grph.Point((xs+1)*100,(ys+1)*100))

rect1.setFill(’HoneyDew’)

rect1.draw(win)

#translating the fillgridob coordinates into the graphics coordinates

gr2[xs,ys]=3

#Transform the array coordinates in new windows coordinates

xwin = (xs*distance)+(distance/2)

ywin = (ys*distance)+(distance/2)

#gnerate a red circle

center = grph.Point(xwin,ywin)

circ = grph.Circle(center, distance/2)

circ.setFill(’red’)

circ.draw(win)

5

#gnerate a name as a lable

name = grph.Text(center, "A1")

name.draw(win)

print(’MAP OF ARRAY \n’)

print(str(gr2))

print(’ATTENTION: Columns represent Rows on screen!\n’)

Wait for another click to exit

message.setText("Click anywhere to quit.")

p=win.getMouse()

win.close()

main()

Figure 1 shows you a grid with obstacles and food and then the inserted
actor after a click into the grid. A text above reminds you that you have to
click if You wants to close the window.

2.3 Putting Things Together

To complete the task of replacing all console inputs we have only to put
the two solutions together: inserting an actor by mouse clicks and continue
with a timer function. The program finishes then after the fulfillment of given
criteria after some seconds automatically.

The following source code is still far from being optimal, but he lets you
recognize possible directions for further improvements.

-*- coding: utf-8 -*-

"""

Created on Mon Oct 16 08:19:31 2017

@author: gerd doeben-henisch

Extend the program gdh-win10.py by a timer-mechanism for automatic

continuation of the event-loop

"""

Program: gdh-win12b.py

def main():

6

Figure 1: Actor after insertion into a grid with objects and food

7

import graphics as grph #Graphics objects from Zelle

import environment as env #Functions to generate grids

import numpy as np #numerical library numpy

import acctor as acc #Acctor related functions

import time as tm #Timer library

##

SET UP THE ENVIRONMENT

##

e1=env.ENVOBJ(’env1’,0)

xmax = 700

ymax = 700

win = grph.GraphWin(’ENVIRONMENT 1’, xmax, ymax)

win.setBackground(’HoneyDew’)

first = 1 #First element of the list

last = 7 # Last element of the list used

distance = 100 #distance of two lines in the grid

maxXcoord = 7 #size of the data array in the background

maxYcoord = 7

nobj = 20 #objects: percentage of the array space !

nfood = 1 #food: percentage of the array space !

#generating the lines of the grid

env.grid(win,xmax, ymax, first, last, distance)

Fill the grid with spaces and objects

gr2=env.fillgridobj2(win,first, last, maxXcoord,maxYcoord,nobj)

Fill the grid with food

gr2=env.fillgridfood(win,first, last, maxXcoord,maxYcoord,nfood,gr2)

Introducing an actor for the event-loop

time=e1.getClock() #Setting the time of ’birth’

#Get the array coordinates for the actor

message = grph.Text(grph.Point(80, 15), "Click on one point")

message.draw(win)

8

Get and draw the coordinate of a point

p = win.getMouse()

p.draw(win)

xc=p.getX()

yc=p.getY()

print(’P ’,p,(xc,yc))

#Transform the window coordinates into the array coordinates

xs = int(xc/100)

ys = int(yc/100)

x = xs+1

y=ys+1

print(’Center Array ’,(x,y))

#Insert the actor in the data array

gr2[xs,ys]=3

#Introduce more parameter

dir=1

color = ’red’

name="A1"

energy=2000

energyrate=2

#Generate an instance of the actor class ACTOBJ

a1=acc.ACTOBJ(name,time,x,y,dir,color, energy,energyrate)

a1.setPos(x,y)

outputMessage=’yesMove’ #This tells the environment whether an actor

#wants to move

a1.setOutputMessage(outputMessage)

#Realize an actor on the window

env.introduceActor(x,y,dir,name,color,energy,distance,win)

print(’MAP OF ARRAY \n’)

print(str(gr2))

print(’ATTENTION: Columns represent Rows on screen!\n’)

##

START AN EVENT LOOP FOR THE ENVIRONMENT

##

ASK ACTOR-BEHAVIOR-FUNCTION WHAT TO DO

9

CHECK WETHER ACTIONS WANTED ARE POSSIBLE

MODIFY THE ENVIRONMENTR IF NECESSARY

REPEAT AS LONG AS ACTORS ARE ALIVE

##

condition for while

FINISH=100

while FINISH >0:

Look to the actor class for new responses

dir=a1.getDir()

print(’Direction = ’, dir)

p=a1.getPos()

print(’Actual Position = ’,p)

xold=p[0]

yold=p[1]

if a1.getOutputMessage() == ’yesMove’:

If there are responses then compute the next possible move

Err, xnew, ynew = env.newPosition(dir,xold,yold)

print(’Err = ’, Err)

print(’New Position planned = ’, (xnew,ynew))

#Check whether this new position is possible

if gr2[xnew-1,ynew-1] != 0:

#Telling the actor that the planned new position is occupied

a1.setInputMessage("NoMove")

print(’actor =’,name,’ has not moved’)

else:

type=3 #actor

#First change position in data array

env.moveArray(type,xold,yold,xnew,ynew,gr2)

#Tell the actor his new position

a1.setPos(xnew,ynew)

#Next change position in window

env.introduceActor(xnew,ynew,dir,name,color,energy,distance,win)

env.deleteActor(p,win)

else:

10

print(’No move wanted by actor.’)

Get the actual environment time

t2=e1.getClock()

print(’Environment Time =’, t2)

#Call the actor

acc.behaviorAc(e1,a1)

The actor will compute it’s response and will update the class

#counting FINISH down for to stop after finitely many steps

FINISH=FINISH-1

envClock = e1.getClock()

print(’Actual Environment Time = ’,envClock)

envClock= envClock+1

e1.setClock(envClock)

print(’New Environment Time = ’,envClock)

energy=a1.getEnergy()

if energy <0:

print(’ATTENTION: Actor ’,name,’ has no more Energy!!!’)

FINISH=-1

#Continuation delayed by the timer functionm

tm.sleep(2) #python timer , sleep 5 secs

print(’THE GAME SAYS GOODBYE!’)

tm.sleep(10)

win.close()

main()

In the environment.py file only the function ’ introduceActor(x,y,dir,name,color,energy,distance,win)’
has changed a little bit. This relates to the feature that one has to delete
the whole cell before inserting the actor. There could be another quadratic
object be on that place before.

11

def introduceActor(x,y,dir,name,color,energy,distance,win):

Convert array coordinates (x,y) into window coordinates (xwin,ywin)

import numpy as np

import graphics as grph

rect1 = grph.Rectangle(grph.Point(x*100,y*100), grph.Point((x+1)*100,(y+1)*100))

rect1.setFill(’HoneyDew’)

rect1.draw(win)

#insert actor

xwin = ((x-1)*distance)+(distance/2)

ywin = ((y-1)*distance)+(distance/2)

#gnerate a red circle

center = grph.Point(xwin,ywin)

circ = grph.Circle(center, distance/2)

circ.setFill(color)

circ.draw(win)

#gnerate a name as a lable

label = grph.Text(center, name)

label.draw(win)

In the actor class ACTOBJ only the head of the function has changed
because there was a doubling of ’name’ and ’label’ which did have the same
reference. Therefore the parameter ’label’ has been abandoned.

class ACTOBJ:

#The actor object has more propeties as a simple environment object.

def __init__(self,name,time,x,y,dir,color, energy,energyrate):

self.name = name

self.time = time

self.position = (x,y)

self.dir = dir

self.color = ’red’

self.energy = energy

self.energyrate = energyrate

def getName(self):

return self.name

12

def setName(self,name):

#This should be a short name different from others; a number

is enough ...

self.name = name

...

References

13

