Programming with Python
Part 1
A simple Actor-Environment Demo
emerging-mind.org eJournal ISSN 2567-6466
(info@emerging-mind.org)

Gerd Doeben-Henisch
gerd@doeben-henisch.de

October 14, 2017

Contents
1 Introduction 2
2 Python Context 2
2.1 Python Language Source 2
2.2 Simple Graphics Library 3
23 PythonConsole. 3
2.4 Integrated Programming Environment 4
241 PyCharm 4
2.4.2 WinPython (With spyder and numpy) 6
3 Problem to be Solved 6
4 Programming with Python 8
41 Testing an Environment 8
411 AFirstWindow 8
4.1.2 Rectangles, Lines, Circles, Text-Labels 9
41.3 ProducingaGrid 10
4.1.4 Grid with Vertical Lines 12
4.1.5 Grid with Vertical and Horizontal Lines 14
4.1.6 Introduce Helper Functions 15
4.2 IntroducingObjects 17
4.3 Introducing Actors 22
4.3.1 First Requirements foran Actor 22
4.3.2 First Considerations How to Program 23

4.3.3 Let an Actor Move: Environment 27

4.3.4 Letan Actor Move: ActorSelf 37

4.3.5 The Final Main Procedure 41

4.3.6 Final Helper Functions for the Environment 45

4.3.7 Final Helpfer Funtions for Actors 50

5 Close Up 54
Abstract

How to start with python? Programming actors within a simple
environment by using simple graphics.

1 Introduction

This text is embedded in a twofold context. On one side we have the
uffmm.org platform where we develop an online book project integrating
subjects like philosophy of science, systems engineering, actor-actor in-
teraction as well as intelligent machines; for this theoretical approach we
need different software-tools. On the other side we have the philosophy-in-
concert.org platform which supports art projects with the topic of the possi-
ble symbiosis of humans and intelligent machines in the future.

While the software for the uffmm.org platform will be based on ubuntu
+ ros (robot operating system) + tensorflow, the art project will additionally
use windows (on account of the music software ableton-live with Max) with
python.

But python is a ‘’chameleon’: it is part of ros and tensorflow too.

In the following text we show first steps in using the programming lan-
guage python to program a first version of intelligent machines (= programs)
within a simple environment for an art event.

2 Python Context

2.1 Python Language Source

To use python we need first the language sources. The sources for python
can be found here: https://www.python.org/. We have downloaded
python 3.6.3 for Windows. After downloading we have installed it with ad-
ministrator rights. On my windows machine (win 10) it has been installed
with this path:

MName Anderungsdatum Typ Grife

__pycache__ Dateiordner

DLLs Dateiordner

Doc Dateiordner

include Dateiordner

Lib Dateiordner

libs Dateiordner

Scripts Dateiordner

tel Dateiordner

Teols Dateiordner
% LICEMSE fxt OpenOffice.org 1.... 30KE
% INEWS. bt OpenOffice.org 1.... 354 KB
) python.exe Anwendung 96 KB
%] pythen3.dil Anwendungserwe... 53 KB
_] python3é.dil Anwendungserwe.., 3.221KB
B pythonw.exe Anwendung 95 KB
%] weruntime140.dIl Anwendungserwe... 82 KB

Figure 1: Python Folder under Windows 10

C:\Users\gerd_2\AppData\Local\Programs\Python

Within this you will find the folder named 'Python36-32’. This means
that the default installation is with the 32-Bit version of python. There is no
chance to select the 64-Bit version, because you will not be asked to select
it. The content of this folder is shown in figure 1.

2.2 Simple Graphics Library

Because we need for our first art projects a simple library for graphics oper-
ations we searched in the web and found a library called 'graphics.py’ from
John M. Zelle [Zel02]. You can download it from http://mcsp.wartburg.
edu. You have to copy it inside a special sub-folder (cf. figure 2) :

C:\Users\gerd_2\AppData\Local\Programs\Python\Python36-32\Lib\site-packages

2.3 Python Console

To check whether python works and the graphics-library is 'known’ to the
python interpreter you can go back to the python-folder (see figure 1). Here
you can either click directly on the 'python.exe’ file to start a python console
window or you click with the right mouse-button on the ’python.exe’ file. A
context-menu will pop up with the option, to fix this file to your task-bar. If

3

ython » Python36-32 » Lib »

Name Anderungsdatum Typ Grafe
__pycache__ Dateiordner
pip Dateiordner
pip-9.0.1.dist-info Dateiordner
pkg_resources Dateiordner
setuptools Dateiordner
setuptools-28.8.0.dist-info Dateiordner
B =asy_install.py 1KB
E graphics.py 3TKB
% README. txt OpenOffice.org 1.... 1 KB

Figure 2: graphics.py in a special sub-folder of python

‘ » Python

P 5 c5f)C 3 26« 26:49) S 18 bit (Intel)] on win32

Figure 3: Python shell under windows 10

you select this then a small icon will appear on your task-bar showing a con-
sole window. This makes life easier if you want to use this python-console
more often.

Whatever you will select, in the python-console you can then enter the
command line: ‘import graphics. This means that the python interpreter
shall import the content of the graphics.py file into the interpreter for further
usage. If the interpreter can find the graphics.py file a new line will appear
without any comments. This means: everything is OK (cf. figure 3).

2.4 Integrated Programming Environment
2.4.1 PyCharm

Although working in the beginning with the python shell is possible (and
surely very instructive for first steps), for more advanced work it is to cum-
bersome. Because millions of programmers have the same problem nice
people (and companies) have developed some more comfortable environ-
ments supporting you with the generation of python-based projects. One of
these environments has the name 'PyCharm’. It is an integrated develop-
ment environment (IDE) for python developed by the company 'Jet Brains’:
https://www. jetbrains.com/pycharm/.

nme * JetBrains » PyCharm Community Edition 2017.2.3 » bin

Mame - Anderungsdaturm Typ GraBe

[Z] append.bat Windows-Batchda... 1 KB
% elevator.exe Anwendung 163 KB
._I focuskiller.dll Anwendungserwe... 32KB
%] focuskillergd.dll Anwendungserwe.., 50 KB
[%] format.bat Windows-Batchda... 1KB
[#] fsnotifier.exe Anwendung TTKB
fsnotifiertd.exe Anwendung 119 KB
J idea properties PROPERTIES-Datei 11KB
I_I ldeaWin32.dIl Anwendungserwe... T2 KB
J IdeaWin6d.dll Anwendungserwe.., B4 KB
[%] inspect.bat Windows-Batchda... 1 KB
| jurnplistbridge.dil Anwendungserwe... 54 KB
_] jumplistbridgetd.dll Anwendungserwe.., 61 KB
[#] launcher.exe Anwendung 140 KB
,j log.axml AML-Dokument KB
pycharm.bat Windows-Batchda... 5KB
a pycharm.exe Anwendung 1.286 KB
J pycharm.exevmoptions VMOPTIONS-Datei 1 KB
Ei pycharmbd.exe Anwendung 1.314 KB
J pycharmbd.exe.vmoptions VMOPTIONS-Datei | KB
[] restarter.exe Anwendung 93 KB
5| runnerw.exe Anwendung 124 KB
E Uninstall.exe Anwendung 110 KB
[5] vistalauncher.exe Anwendung 70 KB
[#] WinProcessListHelper.exe 01.09.2017 16:23 Anwendung 178 KB

Figure 4: PyCharm Folder under Windows 10

If you scroll down the web-page with interesting informations about the
features of this IDE you will find a download-option for the community, which
is for free (with not all nice features). If you select the ’.exe’ download op-
tion than you can download the IDE-software for Windows and install it with
administrator rights afterwards. On my machine it is installed with the fol-
lowing path:

C:\Program Files\JetBrains\PyCharm Community Edition 2017.2.3\bin

The content of this folder is shown in figure 4

Although | have for python only the 32-Bit version it is possible and
makes sense to use for the pycharm-IDE the 64-Bit version. While the
python programs can only address an address-space of 4GB, the pycharm-
projects as such can be larger (in principle).

2.4.2 WinPython (With spyder and nhumpy)

The pyCharm IDE is a very nice tool and the python source with python
3.6.3 installed so far is the most new version available for windows. But a
problem popped up during first tests: the standard python does not include
the data-type ‘'matrix’. For most problems the data-types available like 'list’,
‘tuple’, ’set’ etc are very strong, but for many mathematical applications
one needs definitely matrices and typical mathematical functions and con-
structs. This can by find in a library like 'numpy’.!

To include 'numpy’ into your windows based python installation is not
easy going. The best solution is to download a python-distribution which
already has integrated numpy and is fitting windows. After some search |
detected 'WinPython’.?

The installation was quite straightforward. After downloading the Win-
python 3.6.2 64-Bit version for Windows in the target folder, it extracted
itself and prepared everything. See the final folder in figure 5.

This distribution contains as an integrated development environment the
spyder software. This software looks a bit 'poorer’ then the pycharm IDE
but it works nicely and has the integrated numpy package.

In the following experiments | often use both implementations (pycharm
with python 3.6.2 32-Bit and spyder with python 3.6.2 64-Bit with numpy).

The special graphics library from John Zelle ‘graphics.py’ has to be in-
troduced to the WinPythin distribution again manually in the following folder:

C:\Users\gerd_2\Documents\EMProjekt\SW\WinPython-64bit-3.6.2.0Qt5. ..
\python-3.6.2.amd64\Lib\site-packages

3 Problem to be Solved

To start and exercise programming with python we have a real project which
has to be programmed.

We want to demonstrate the behavior of simple input-output system (10-
SYS) which live in a simple, flat (2D) environment (ENV). We want to inves-
tigate three types of systems: behaving (i) with a fixed rule, what to do;
(ii) following a random behavior, and (iii) showing a random behavior which
can be enhanced with a simple memory of realized paths from start to some

'See here: http://www.numpy.org/
2See here: https://winpython.github.io/

SW > WinPython-64bit-3.6.2.00t5

e

MName Anderungsdatum Typ
notebooks Dateiordner
python-3.6.2.amd64 Dateiordner
scripts Dateiordner
settings Dateiordner
tools Dateiordner

* |DLEX (Python GUI).exe
B 1Python Qt Console.exe

Anwendung

Anwendung
_ Jupyter Lab.exe Anwendung
— Jupyter Notebook.exe Anwendung
[Ot Designer.exe Anwendung
& Spyder reset.exe Anwendung
@& Spyder.exe Anwendung
B8 WinPython Command Prompt.exe Anwendung
* 2 WinPython Control Panel.exe Anwendung
“ WinPython Interpreter.exe Anwendung
E5 WinPython Powershell Prompt.exe Anwendung

Figure 5: The WinPython Folder as separate folder

goal.

The systems have a minimal 'visual perception’ of the environment; they
consume ’'energy’ depending on the time; and they have to 'eat’ some "food’
before some threshold of energy, otherwise they will die. After a death the
experiment can be repeated with everything set back to default values.

To be able to survive they can move around in the four main directions
of their quadratic environment. The borders of the environment can not be
crossed and within the borders there are only two kinds of objects: (i) 'ob-
stacles’ which can not be passed directly and ’food’ which can be 'eaten’.
In the simple version the food will regenerate immediately after it has been
consumed.

If there is more than one input-output system in the environment then a
system A is like an obstacle for another system B.

There should be ’log-files’ from every experiment allowing the repetition
of the behavior of a system in that environment.

4 Programming with Python

We will proceed in two steps: first we will make some experiments with
parts of the whole problem. Then we will put everything together in a more
generalized setting. As our ‘guide’ for the programming we will use the book
from John Zelle [Zel02], especially chapter 5 dealing with graphics.

4.1 Testing an Environment

One important part of the problem is the environment. It should be pre-
sented as a graphical object showing a flat, 2D-area with regular fields (a
‘grid’), and these fields can be occupied either by ’empty space’, by ’obsta-
cles’ or by 'food-objects’.

4.1.1 A First Window

Therefore we make the following assumptions:

1. We open a window with the size 700 x 700 Pixel and the label 'EN-
VIRONMENT 1°.

2. The window will close if you give an answer to the input question.

A possible simple source code could read as follows:3

—*- coding: utf-8 —*-

gdh_winO.py

author: Gerd Doeben-Henisch

Trying a first environment

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H H

def main():

import graphics

win = graphics.GraphWin(’ENVIRONMENT 1’, 700, 700)
answer = input("Shall we finish? (y/n)")
win.close()

main()

SComment: LaTeX does not preserve the leading spaces in the python source code.
Thus, if you want to use this program with copy and paste you have to insert these manually.

This simple program imports the ’graphics.py’ module from John Zelle
and then opens a window 'win’ with label 'ENVIRONMENT 1’ with the size
700 x 700 pixels. The windows waits to close until you input something
(because there is no check of agreement of input and question.)

This works fine. But even in this simple code (compared to the original
commands in Zelle it has been changed) one can detect differences be-
tween python at the time of the book 2002 and today 2017. This gives you
a chance to learn a bit more about the language.

4.1.2 Rectangles, Lines, Circles, Text-Labels

In the next example we have introduced some elements: a rectangle, two
lines, a circle and a text-label for the circle.

—*- coding: utf-8 -*-

gdh_winl.py

author: Gerd Doeben-Henisch

Trying a first environment

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H R

def main():

import graphics

win = graphics.GraphWin(’ENVIRONMENT 1’, 700, 700)

rectl = graphics.Rectangle(graphics.Point(130,70), graphics.Point(190,130))
rectl.draw(win)

line = graphics.Line(graphics.Point(70,0), graphics.Point(70,699))
line.draw(win)

line2=line.clone()
line2.move(70,0)
line2.draw(win)

center = graphics.Point(100,100)
circ = graphics.Circle(center, 30)
circ.setFill(’red’)

circ.draw(win)

label = graphics.Text(center, "Red Circle")
label.draw(win)

answer = input("Shall we finish? (y/n)")

Figure 6: Simple window with rectangle, lines, circle and text

win.close()
main()

This produces the following graphical output (cf. figure 6):

4.1.3 Producing a Grid

This shows how such a window could work ’in principle’. This is not yet,
what we want. Let us make the requirements a bit more axplicit:

1. We open a window with the size 700 x 700 Pixel and the label 'EN-
VIRONMENT 1.

10

* Soyider Python 3.6] = o o
File Edit Search 3o Bun Debug Comscles Projects Toals Wiew Help

OB DB HEEErE BEX £ * € 5 e ttmnmnormsmermcews e A
Editor - Ci\pereigerd \EMProzecs|S WP Y-PROGRAMS\goh_mn_2.py
0O oz E] | mstiay

GraphWin[ENVIRONMENT 1', 782, 708)
s.Rectanglelgraphics . Poanti132,78), gr:

algraphics Naint (78,8], graphice.faint(78,606]] Ch

e finash?

In [2]: runfile('C:/
dh win 1.py", wd

shall we fimush? {ysnly

In [5]: |

Figure 7: The spyder IDE starting editing gdh_win2.py

2. The window will be written with vertical and horizontal lines generating
a grid with 7 times 7 ’cells’ each with the size 100 x 100.

3. The window will close if you give an answer to the input question.

Before we continue here a snapshot of the spyder IDE just beginning to
write the next version of the test program’ gdh_win2.py’ (cf. figure 7).

The main idea of 'gdh_win2.py’ is to draw the lines of the intended grid
with some automatic (and scalable) mechanisms. The first idea is to pro-
duce a list of possible objects for the vertical lines. This can be done with
three steps: (i) generate a line object for the first vertical line in the win-
dow, then (ii) generate a list for 7 possible objects (in the range from 1 to
7) and then assign the line-objects to the list-objects. This is done here for
the first two list objects (including the ‘clone’ operation). Then one can use
the 'move’ operation to move the second line-object from the original start
position 100 pixels to the right. As the output shows, this idea works.

—*- coding: utf-8 -*-

gdh_win2.py

author: Gerd Doeben-Henisch

Trying a first environment

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H R

def main():

11

import graphics
win = graphics.GraphWin(’ENVIRONMENT 1°, 700, 700)

line = graphics.Line(graphics.Point(100,0), graphics.Point(100,699))
1x=list(range(1,8))

1x[1]=1ine
1x[1] .draw(win)

1x[2]=1ine.clone()
1x[2] .move (100,0)
1x[2] .draw(win)

answer = input("Shall we finish? (y/n)")

win.close()
main()

4.1.4 Grid with Vertical Lines

The following small program 'gdh_win3.py’ draws successfully 6 vertical
lines with a distance of 100 pixels each. There is one base-line at the
border of the windows (which is not drawn), and there is a list of possi-
ble objects. Each of these possible objects clones the first line-object and
moves it accordingly i-times 100 pixels to the right.

-*- coding: utf-8 -x*-

gdh_win3.py

author: Gerd Doeben-Henisch

Trying a first environment

Using book from John Zelle (2002) and his simple graphics.py library

H OH H H H

def main():
import graphics
win = graphics.GraphWin(’ENVIRONMENT 1’, 700, 700)

1x=list(range(1,8))
line = graphics.Line(graphics.Point(0,0), graphics.Point(0,699))

for i in range(1,7): #the workable range ends up with ’6’!
1x[il=1line.clone()

12

Figure 8: Windows with two lines from gdh_win2.py

13

1x[i] .move(i*100,0)
1x[i].draw(win)
print (i)

answer = input("Shall we finish? (y/n)")

win.close()
main()

4.1.5 Grid with Vertical and Horizontal Lines

From here it is a small step to a full grid. See the result on the screen in
figure 9.

—*- coding: utf-8 —*-

gdh_win4.py

author: Gerd Doeben-Henisch

Trying a first environment

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H H

def main():
import graphics
win = graphics.GraphWin(’ENVIRONMENT 1°, 700, 700)

1x=list(range(1,8))
line = graphics.Line(graphics.Point(0,0), graphics.Point(0,699))

for i in range(1,7):
1x[i]l=line.clone()
1x[i] .move(i*100,0)
1x[i].draw(win)
print (i)

ly=1list(range(1,8))
liney = graphics.Line(graphics.Point(0,0), graphics.Point(699,0))

for i in range(1,7):
ly[i]l=1liney.clone()
ly[i] .move(0,i*100)
1ly[i] .draw(win)
print (i)

answer = input("Shall we finish? (y/n)")

14

Figure 9: A full 7 x 7 grid with gdh-win4.py

win.close()
main()

4.1.6 Introduce Helper Functions

Because we know that our environment program will grow in size in the
future we can consider already here to ‘condense’ the code a little bit by
asking, which part of the code can be 'outsourced’ into a separate file and
which will be called ’on demand’ with only a single function call. As one
can see (below), one can easily take out the lines with the production of the
lines in the window.

To do this we generate a new file called ’environment.py’ which shall
become the place of all the helping functions, define there our first helpfer

15

function 'grid()’ and then modify our main program as ‘gdh-win5.py’.

Running the main() program with this new helper function 'grid()’ pro-
duces the same output as shown before (cf. figure 9).

—*- coding: utf-8 —*-

environment.py

author: Gerd Doeben-Henisch

Collection of functions to support simple enviroments

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H

def grid(win,xmax,ymax,first,last,distance):
import graphics

1x=1list (range(first,last+1))
linex = graphics.Line(graphics.Point(0,0), graphics.Point(0,ymax-1))

for i in range(first,last):
1x[i]=linex.clone()

1x[i] .move(i*distance,0)
1x[i] .draw(win)

print (i)

ly=list(range(first,last+1))
liney = graphics.Line(graphics.Point(0,0), graphics.Point(xmax-1,0))

for i in range(first,last):
ly[i]l=1liney.clone()

1ly[i] .move(0,i*distance)
1ly[i].draw(win)

print (i)

—*- coding: utf-8 —*-

gdh_win4.py

author: Gerd Doeben-Henisch

Trying a first environment

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H H

def main():

import graphics #Graphics objects from Zelle
import environment #Functions to generate grids

16

win = graphics.GraphWin(’ENVIRONMENT 1’, 700, 700)

xmax = 700

ymax = 700

first = 1 #First element of the list

last = 7 # Last element of the list used

distance = 100
environment.grid(win,xmax, ymax, first, last, distance)
answer = input("Shall we finish? (y/n)")

win.close()
main()

4.2 Introducing Objects

Now with a first simple grid we want to introduce first objects. We distin-
guish two big categories: actor-objects and non-actor-objects. Before we
are going into the details we stay with objects in general.

We distinguish between the graphical presentation of the grid with ob-
jects and the object data structure which is somehow ’behind’ the scene.
Everything which is important to know about the objects will be kept in this
object data structure and only that what should be visible in some moment
of time should be 'mapped’ from the data structure into the visual represen-
tation. There are other representations possible like 'sounds’, ‘'smells’ etc.;
all the needed data are hidden in the objects data structure.

There are many strategies possible to manage this. We start here with
the following simple structure:

1. OBJEKTDISTRIBUTION (OD): There is a n-m-array (a 'matrix’) as
a 1-to-1 mapping of the graphics grid which contains numbers rep-
resenting the kind of object which shall be present in the world. ’0’
represents empty space, 1’ obstacles, '2’ food, and '3’ are agents.

2. OBJECT GENERATION (OG): This object distribution will in the be-
ginning be generated by random as a percentage 'nobj’ of the avail-
able array space.

3. FOOD GENERATION (FG): The food generation will be handled sim-
ilar to the object generation.

17

The following helper function from the file ’environment.py’ produces
first an array of thre wanted dimension and then fills this array with zeros.
Afterwards the coordinates of the wanted objects will randomly be com-
puted. On the console you can see some printing of the final distribution,
but be aware. numpy translates the rows of the array into a string and the
string shows the rows as columns!

def fillgridobj2(win,first, last, maxXcoord,maxYcoord,nobj) :
#nobj gives the percentage how many objects shall be inserted into the matrix

import graphics as grph
import numpy as np

#Compute number of wanted objects by percentage

number=int (((maxXcoord*maxYcoord)/100)*nobj)
if number <1:
number=1

gr2=np.zeros ((maxXcoord,maxYcoord) ,int)
Produce randomly the coordinates of the wanted objects

for i in range(1l,number):
p=np.random.randint (first,last+1,size=2) #coordinates for the fillgridobj]
print (p)

gr2[pl0]-1,p[1]-1]1=1 # Set a marker in the data array
x=p[0]-1
y=pl[1]-1

#translating the fillgridob coordinates into the graphics coordinates

rectl = grph.Rectangle(grph.Point (x*100,y*100), grph.Point ((x+1)*100, (y+1)*100))
rectl.setFill(’black’)
rectl.draw(win)

print (’MAP OF ARRAY \n’)

print(str(gr2))
print (’ATTENTION: Columns represent Rows on screen!\n’)

18

return gr2

After providing an area with spaces and obstacles the next function
computes randomly food positions according to the percentage 'nfood’. On
the console you can again see some printing of the final distribution with
the same oddity of translating rows into columns.

def fillgridfood(win,first,last, maxXcoord,maxYcoord,nfood,gr2):
#n gives the numer of food inserted into the matrix

import graphics as grph
import numpy as np

number=int (((maxXcoord*maxYcoord) /100)*nfood)
if number <1:
number=1

for i in range(1,number+1):

p=np.random.randint (first,last+1l,size=2) #coordinates for the fillgridobj]

print(p)

gr2[pl0o]-1,p[1]-1]=2

#translating the fillgridob coordinates into the graphics coordinates

rectl = grph.Rectangle(grph.Point((p[0]-1)*100, (p[1]1-1)*100),grph.Point(p[0]*10
rectl.setFill(’green’)

rectl.draw(win)

print (’0BSTACLES with FOOD \n’)

This concersion shows a matrix whose columns correspond to the
rows of the original matrix !

gr2s=str(gr2)
print(gr2s)

print(’anders \n’)

#This conversion shows rows after the conversion which correspnd
#to the columns in the original array !

gprint (gr2,last)

return gr2

19

You can see an example of the columns-row mapping below. This
shows a printout on the console from the small world shown in figure 10.

OBSTACLES with FOOD

[[0 0010 0 0]<--- translate columns here into rows in the figure
[01 0100 0]

[0000000O0]

[1 00000 O]

[0001100]

[002100 0]

[0000100]]

anders

0001000010100000000001000000000110000210000000100
0001000<--- translate these rows into columns in the figure
0101000
0000000
1000000
0001100
0021000
0000100
Shall we finish? (y/n)y
Here is the file with the main() program labeled ’gdh-win7.py’. After the
import commands and some value-settings a first call initiates a graphic
window 'win’.

Then this graphic window 'win’ will be filled with horizontal and vertical
lines to produce optical a grid.

With the graphical grid given a data structure is generated in the back-
ground which represents an array 'gr2’ with the size 7 x 7 representing the
cells of the graphical grid.

20

This data array will be filled with spaces '0’ and obstacles ’1’ (black col-
ored squares).

Then food objects 2’ are inserted in the data array (green colored squares).

In parallel are the objects from the data array mapped into the graphics
window.

—*- coding: utf-8 -*-

gdh-win7.py

author: Gerd Doeben-Henisch

Trying a first environment

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H R

def main():

import graphics as grph #Graphics onbjects from Zelle
import environment as env #Functions to generate grids
import numpy as np #numerical laibrary numpy
xmax = 700

ymax = 700

win = grph.GraphWin(’ENVIRONMENT 1°, xmax, ymax)

first =1 #First element of the list

last = 7 # Last element of the list used

distance = 100 #distance of two lines in thr grid
maxXcoord = 7 #size of the data array in the background
maxYcoord = 7

nobj = 20 #objects: percentage of the array space !
nfood =1 #food: percentage of the array space !

#generating the lines of the grid
env.grid(win,xmax, ymax, first, last, distance)

Fill the grid with spaces and objects
gr2=env.fillgridobj2(win,first, last, maxXcoord,maxYcoord,nobj)

Fill the grid with food
gr2=env.fillgridfood(win,first, last, maxXcoord,maxYcoord,nfood,gr2)

21

Figure 10: Graphic window with spaces, obstacles (black squares), and
food (green squares).

answer = input("Shall we finish? (y/n)")

win.close()
main()

4.3 Introducing Actors
4.3.1 First Requirements for an Actor

Although the environment is still very simple we will not improve it now but
we will have some first look to some simple actors.

22

From the view of the environment is an actor nothing else than another
object having some shape (here a ‘circle’) with some color (here 'red’), but
with at least wo additional properties: an actor has some form of percep-
tion, taking some kind of ’input’ from the external environment ’into’ his
internal states (IS), and he has some kind of a response or reaction to the
environment. Such a response does some change to the environment. In
our case we assume that the actor can move on the plane in four directions
which are parallel to the y and x axis. He can move "forward’ or he can 'turn’
by 90° left or right, and this as often he wants. Thus this simple actor can
turn around in a circle and can move in every of the four possible directions.

Because there can be more than one actor (not directly in the begin-
ning but soon :-)) we assume here that an actor has a ’label’ which gives
him some unique shape-identity that he can distinguished from other ac-
tors.

Ouir first actor will need some amount of energy when he is alive, de-
pending alone from the time running; if this energy level would go below
some threshold 0g,.-4, then the actor would start dying. There is some
critical period where the actor can not move any more but another actor
could him bring some food. If this critical period has passed over the actor
will die.

As long as an actor has enough energy to move he will travel around in

his environment. If he finds some food then he will eat it. This can increase
his energy level depending from the amount of energy kept in the food.

4.3.2 First Considerations How to Program

Because the actor has 'two faces’: being an object and being an input-
output system with inputs (perceptions) and outputs (responses) we will
consider both aspects separately.

The actor as object needs some basic layout as an object. For this we
take the simple object-class so far and extend this class a bit. See below:

class ENVOBJ:
import graphics as grph

def __init__(self, kind,x,y,x2,y2,icolor):

23

self.kind = kind
self.position = ((x,y), (x2,y2))
self.color = icolor

def getType(self):
return self.kind

def setType(self,intype):
self .kind = intype

def getPos(self):
return self.position

def setPos(self,x,y,x2,y2):
self .position = ((x,y),(x2,y2))

def getColor(self):
return self.color

def setColor(self,incolor):
self.color = incolor

This class allows some basic properties like 'type’ of object, ‘color’, and
‘position’. Because this was mainly related to 'obstacle’ objects these posi-
tions where directly given with the coordinates of the graphic window. The
planned actor is a movable object, thus we should give the coordinates first
for the data structure and only later, if needed, this will be mapped to the
graphic window. Furthermore we need some label for the identification.
Another important information is the actual direction, because the actual
direction influences the field of the actor vision. We do not allow that the
actor has a 360° view. Instead he has only a fragment of his environment
and he must find some way (in the long run) to built some more general
views of his environment.

Here is a first class-definition for actor-objects.

class ACTOBJ:
#The actor object has more propeties as a simple environment object.

def __init__(self,x,y,label,dir,energy):

self.kind = ’actor’
self.position = (x,y)

24

self.color ’red’
self.label label
self.dir = dir
self.energy = energy

def getType(self):
return self.kind

def setType(self,inkind):

Basically an actor will stay an actor. But it is conceivable
that there are more different types of actors in the future
self .kind = inkind

def getPos(self):
This is the position in the data array with simple (x,y) coordinates
return self.position

def setPos(self,x,y):
This is the position in the data array with simple (x,y) coordinates
self.position = (x,y)

def setDir(self,dir):
There are four basic directions as {1,2,3,4}
self.dir = dir

def getDir(self):
There are four basic directiomns as {1,2,3,4}
return self.dir

def setEnergy(self,energy):
Show actual energy level
self.energy = energy

def getEnergy(self):
Show actual energy level
return self.energy

def setlabel(self,label):

#This should be a short name different from others; a number
is enough ...

self.label = label

def getLabel(self):
#This should be a short name different from others; a numer

25

is enough ...
return self.label

def getColor(self):
All actors have the color red (for now; perhaps more later)
return self.color

def setColor(self,incolor):
All actors have the color red (for now; perhaps more later)
self.color = incolor

Then we need a function to introduce an actor in the environment. A
first sketch is here:

def introduceActor(x,y,dir,label,energy,distance,win):

Convert array coordinates (x,y) into window coordinates (xwin,ywin)
import graphics as grph

xwin = ((x-1)*distance)+(distance/2)

ywin = ((y-1)*distance)+(distance/2)

#gnerate a red circle

center = grph.Point(xwin,ywin)

circ = grph.Circle(center, distance/2)
circ.setFill(’red’)

circ.draw(win)

#gnerate a name as a lable
name = grph.Text(center, "A1")
name.draw(win)

Within the main program ’gdh-win8.py’ we have written a simple call for
this function:

x=5

y=b

dir=1
label= "A"
energy=200

env.introduceActor(x,y,dir,label,energy,distance,win)

26

Figure 11: Environment with objects (black squares), food (green squares),
and a first actor (red circle)

In the figure 11 one can see how the actor appears as a red circle with
a name-label in the grid.

4.3.3 Let an Actor Move: Environment

Now where we have a first idea how we can introduce an actor inside the
grid-environment, we want to clarify how we can enable an actor to move
around.

The basic idea sounds simple: (i) take a direction, (ii) compute the new

coordinates, (iii) check, if the intended cell of the grid is not occupied by
another object; if free then do a move; if not free, then take a new direction.

27

Because we can assume by default that an actor is always placed in the
grid with at least one free cell in his neighborhood there will always be at
least one move possible. The only theoretical limits can be the exhaustion
of the energy or that the free space is a small, encircled area of the grid-
world with no path to some food.

In the new version of the python main program one can see that the
main program has now been partitioned in two parts:

1. SET UP OF THE ENVIRONMENT
2. EVENT LOOP

Until now the program did set up a grid-environment as an intended
test-bed for possible actors. Now, when we have this, we can start an event
loop which allows the actors to do some work in this grid environment.

For this to work we have to distinguish between two perspectives:
1. ENVIRONMENT MANAGER
2. ACTOR BEHAVIOR FUNCTION

The part of the actor will be managed by the behavior function of an
actor. This function takes some input from the world, computes some re-
sponse, and then sends back the planned response. Every actor can have
his own behavior function!

The environment manager provides all actors with the necessary input
from the world and takes account of all responses. It is the duty of the en-
vironment manager to clarify whether a planned action is possible or not. If
the actor e.g. wants to make a move onto a cell of the grid which is already
occupied this will not be allowed (an exception would be, that the planning
actor has some powerful action at hand, which would allow him, to enable
such a move).

Thus what is needed is an event loop managed by the environment
manager, which delivers the necessary messages to the actors (their in-
put) and asks back what responses are known.*.

In the following code of main you can detect a first outline of this new
partitioning in 'SET UP OF ENVIRONMENT’ and 'EVENT LOOP’.

*In a distributed real-time system this would be done within time-frames; in our simple
scenario the environment manager sets up some scheduling rule for this

28

In the Setup an environment is generated with window, data array and
a first actor.

Then the beginning of the event loop is visible. The environment man-
ager looks up for the actual direction and position of the introduced actor
al. Then he looks whether the intended new position is possible. If Yes
then he changes the position of the actor a1 in the data array as well in the
window. This includes the deletion of the old positions and the update of
the position in the actor class. The actor class works here like an interface
between the environment and the behavior function which is internal to the
actor.

—*- coding: utf-8 -*-

gdh-win7.py

author: Gerd Doeben-Henisch

Trying a first environment

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H H

def main():

import graphics as grph #Graphics onbjects from Zelle
import environment as env #Functions to generate grids
import numpy as np #numerical laibrary numpy
import acctor as acc #Acctor related functions

#Hi#t

SET UP THE ENVIRONMENT

#i#t

xmax = 700

ymax = 700

win = grph.GraphWin(’ENVIRONMENT 1’, xmax, ymax)
win.setBackground (’HoneyDew’)

first = 1 #First element of the list

last = 7 # Last element of the list used

distance = 100 #distance of two lines in thr grid
maxXcoord = 7 #size of the data array in the background

maxYcoord = 7
nobj = 20 #objects: percentage of the array space !
nfood =1 #food: percentage of the array space !

#generating the lines of the grid

29

env.grid(win,xmax, ymax, first, last, distance)

Fill the grid with spaces and objects
gr2=env.fillgridobj2(win,first, last, maxXcoord,maxYcoord,nobj)

Fill the grid with food
gr2=env.fillgridfood(win,first, last, maxXcoord,maxYcoord,nfood,gr2)

Introducing an actor for the event-loop

dir=1
label="A1"
energy=200

a=input("Please an x-coordinate (1-7) for the actor ")
b=input ("Please an y-coordinate (1-7) for the actor ")
x=int(a)

y=int (b)

al=acc.ACTOBJ(x,y,dir,label,energy,distance)
al.setPos(x,y)
env.introduceActor(x,y,dir,label,energy,distance,win)
##

START AN EVENT LOOP FOR THE ENVIRONMENT

##

ASK ACTOR BEHAVIOR FUNCTIONS WHAT TO DO

CHECK WETHER ACTIONS ARE POSSIBLE

MODIFY THE ENVIRONMENTR IF NECESSARY

REPEAT AS LONG AS ACTORS ARE ALIVE

##

condition for while

FINISH=10

while FINISH >0:

Look to the actor class for new responses

dir=al.getDir()

30

print (’Direction = ’, dir)
p=al.getPos()

print (’Actual Position = ’,p)
x0ld=p[0]

yold=p[1]

If there are responses then compute the next possible move

Err, xnew, ynew = env.newPosition(dir,xold,yold)
print CErr = °, Err)
print (’New Position = ’, (xnew,ynew))

#Check whether this new position 1is possible

if gr2[xnew-1,ynew-1] != 0:
al.setInputMessage("NoMove")

print (’type =’,type,’ has not moved’)

else:

type=3 #actor

#First change position in data array
env.moveArray(type,xold,yold,xnew,ynew,gr2)
al.setPos(xnew,ynew)

#Next change position in window
env.introduceActor(xnew,ynew,dir,label,energy,distance,win)
env.deleteActor(p,win)

send the actor a feedback by changing the actor class values

call the actor behavior function

The actor will compute i t’s response and will update the class

#counting FINISH down for to stop after finitely many steps
FINISH=FINISH-1

repeat loop
answer = input("Shall we finish? (y/n)")

win.close()
main()

In the figure 12 you can see the actor A1 after he has been moved

31

from the environment manager from start-position (6,6) to the position (6,1)
where he came to stop on account of an obstacle ahead of him. In the full
program the actor A1 will interact with the environmanager and change his
direction, but here the behavior function of the actor is not yet implemented.

Nevertheless shows this the different views of the environment and the
actor. The environment-manager takes the actor as he appears to the en-
vironment by direction and position and moves the actor as long as there is
no change.

This power of the environment-manager is strong. We can limit it by
introducing an additional condition saying to the ’outside’ besides actual
position and direction whether the actor ‘'wants’ to move or not. Then the
environment manager would move the actor only if he wants to move (in-
dependent of the real possibility to move or not).

Please an x-coordinate (1-7) for the actor 6

Please an y-coordinate (1-7) for the actor 6

Direction = 1
Actual Position = (6, 6)
Err = O

New Position = (6, 5)
Type = 3 has moved to (6, 5)

Direction = 1
Actual Position = (6, 5)
Err = 0

New Position = (6, 4)
Type = 3 has moved to (6, 4)

Direction = 1
Actual Position = (6, 4)
Err = 0

New Position = (6, 3)
Type = 3 has moved to (6, 3)

Direction = 1

Actual Position = (6, 3)

Err = 0

New Position = (6, 2)

Type = 3 has moved to (6, 2)
Direction = 1

Actual Position = (6, 2)
Err = O

32

@ ENVIROMMENT 1 (Keine Rickmeldung) —

Figure 12: Actor A1 after moving from the start until he has been blocked

33

New Position = (6, 1)
type = 3 has not moved

Here you can find the new helper functions to calculate the new planned
position 'newPosition(dir,xold,yold)’, a move in the data array 'moveArray(type,xold,yold,xnew,ynew,g
as well as the deletion of the old position in the window ’ deleteActor(p,win)’.

def deleteActor(p,win):

Convert array coordinates (x,y) into window coordinates (xwin,ywin)
import numpy as np
import graphics as grph

x=p[0]-1
y=pl[1]-1

#translating the fillgridob coordinates into the graphics coordinates

rectl = grph.Rectangle(grph.Point (x*100,y*100), grph.Point((x+1)*100, (y+1)*100))
rectl.setFill(’HoneyDew’)
rectl.draw(win)

#Move to new position in data array

def moveArray(type,xold,yold,xnew,ynew,gr2):
import numpy as np

gr2[xold-1,yold-1]=0

gr2[xnew-1,ynew-1]=type

print (’Type =’,type,’ has moved to’,(xnew,ynew))

Compute a new position starting with an old position and a direction
def newPosition(dir,xold,yold):

xnew=xo0ld

ynew=yold

Err=0

if dir == 1:

ynew=yold-1
elif dir == 2:

34

xnew=xold+1

elif dir == 3:

ynew=yold+1

elif dir == 4:

xnew=xold-1

else:

print (’ERROR : Wrong Direction ! ’)
Err=-1

return Err, xnew, ynew
Finally the actual actor-class definition, which is in use for actor a1 (A1).
—*- coding: utf-8 —*-

actor.py
author: Gerd Doeben-Henisch

H OH H R

Collection of functions to support simple actors

class ACTOBJ:
#The actor object has more propeties as a simple environment object.

def __init__(self,x,y,dir,label,energy,distance):
self .kind = ’actor’

self.position = (x,y)

self.color = ’red’

self.label = label

self.dir = dir

self.energy = energy

def getType(self):
return self.kind

def setType(self,inkind):

Basically an actor will stay an actor. But it is conceivable
that there are more different types of actors in the future
self.kind = inkind

def getPos(self):
This is the position in the data array with simple (x,y) coordinates

return self.position

def setPos(self,x,y):
This is the position in the data array with simple (x,y) coordinates

35

The array counts from O ... n-1
The user counts from 1 ... n
self.position = (x,y)

def setDir(self,dir):
There are four basic directions as {1,2,3,4}
self.dir = dir

def getDir(self):
There are four basic directions as {1,2,3,4}
return self.dir

def setEnergy(self,energy):
Show actual energy level
self.energy = energy

def getEnergy(self):
Show actual energy level
return self.energy

def setlabel(self,label):

#This should be a short name different from others; a numer
is enough ...

self.label = label

def getLabel(self):

#This should be a short name different from others; a number
is enough ...

return self.label

def getColor(self):
All actors have the color red (for now; perhaps more later)
return self.color

def setColor(self,incolor):
All actors have the color red (for now; perhaps more later)
self.color = incolor

def setInputMessage(self,inputMessage):
#Some message from the environment

self.inputMessage=inputMessage

def getInputMessage(self):
return self.inputMessage

36

4.3.4 Let an Actor Move: Actor Self

Till now we have described what the environment-manager can do. It’s time
now to have a look to the actor.

Clearly, describe an actor is in principle an infinite story. Everything you
can imagine you can put into an actor.

Here we will start as simple as possible.

We make a general decision: we distinguish here between BODY FUNC-
TIONS which are — like in the case of real biological systems — mostly AU-
TOMATIC, and MENTAL FUNCTIONS which are by definition CONSCIOUS
actions.

Let us first have a look to the basic ability to move.

Given by the world and the body so far the actual actor can do two
things: (i) he can change the direction and (ii) he can do a move or not.

For the change of the direction we propose the following mechanism:

1. Decide whether you will keep your actual direction or whether you will
turn’left’ from now or ’right’ (by chance).

2. If you have decided the direction you have to decide whether you will
move or not.

That'’s all for now.

Independent of your mental actions there is a body function consuming
energy depending from time. To solve the problem of having a common
time for the whole environment we introduce an ENVIRONMENT-CLOCK
giving time stamps for all.

To enable an environment clock as source for an environment time we
have rewritten the class ENVOBJ. Until now we didn’t really use this class.
Now it’s time to do this.

As you can see below the class ENVOBJ contains two properties: a
name and a clock.

class ENVOBJ:

37

def __init__(self,name,clock):

self .name = name
self.clock = clock

def getName(self):
return self.name

def setName(self,name):
self .name = name

def getClock(self):
return self.clock

def setClock(self,clock):
self.clock = clock

In the main program 'gdh-win10.py’ we have inserted in the beginning a
constructor for building an instance of an environment object called 'e1’:

el=env.ENVOBJ(’envil’,0)

The new environment object has the name ’e1’ and the clock begins
counting with '0’. This counting is demonstrated in the log-data from a
short run below.

Please an x-coordinate (1-7) for the actor 3
Please an y-coordinate (1-7) for the actor 5

Direction = 1

Actual Position = (3, 5)

No move wanted by actor.
Actual Environment Time = O
New Environment Time = 1
Direction = 1

Actual Position = (3, 5)

No move wanted by actor.
Actual Environment Time = 1
New Environment Time = 2

Shall we finish? (y/n)

38

Therefore we can decrease the amount of energy depending from the
environment time by some fixed amount.®

The following log shows how the energy level is decreasing until you get
a warning that the actor is running out of energy supply.

Please an x-coordinate (1-7) for the actor 2
Please an y-coordinate (1-7) for the actor 7

Direction = 1

Actual Position = (2, 7)

No move wanted by actor.

Environment Time = O

Actor Al has new energy level = 2000

New direction of actor Al is = 3
actor Al wants to move

Actual Environment Time = O

New Environment Time = 1

Next Step Wanted (y/n)y

Direction = 3
Actual Position = (2, 7)
Err = 0

New Position planned = (2, 7)

Type = 3 has moved to (2, 7)
Environment Time = 1

Actor Al has new energy level = 1998

New direction of actor Al is = 2
actor Al wants to move

Actual Environment Time = 1

New Environment Time = 2

Next Step Wanted (y/n)y

Direction = 2
Actual Position = (2, 7)
Err = O

New Position planned = (3, 7)
Type = 3 has moved to (3, 7)
Environment Time = 2

SWith more complex systems the amount of consumed energy will depend from several
parameters, not only from the time spent.

39

Actor Al has new energy level = 1994

New direction of actor Al is = 4
actor Al wants to move

Actual Environment Time = 2

New Environment Time = 3

Next Step Wanted (y/n)y

Direction = 4
Actual Position = (3, 7)
Err = O

New Position planned = (2, 7)

Type = 3 has moved to (2, 7)
Environment Time = 3

Actor Al has new energy level = 1988

New direction of actor Al is = 1
actor Al wants to move

Actual Environment Time = 3

New Environment Time = 4

Next Step Wanted (y/n)y

Direction = 1
Actual Position = (2, 7)
Err = O

New Position planned = (2, 6)

actor = A1 has not moved

Environment Time = 4

Actor Al has new energy level = 1980
New direction of actor Al is = 2
actor Al wants to move

Actual Environment Time = 4

New Environment Time = 5

Next Step Wanted (y/mn)y

Direction = 2
Actual Position = (2, 7)
Err = O

New Position planned = (3, 7)

Type = 3 has moved to (3, 7)
Environment Time = 5

Actor Al has new energy level = 1970
New direction of actor Al is = 4
actor Al wants to move

Actual Environment Time = 5

New Environment Time = 6

40

Next Step Wanted (y/m)y

Direction = 4
Actual Position = (3, 7)
Err = O

New Position planned = (2, 7)

Type = 3 has moved to (2, 7)
Environment Time = 6

Actor Al has new energy level = 1958

New direction of actor Al is = 3
actor Al wants to move

Actual Environment Time = 6

New Environment Time = 7

Next Step Wanted (y/n)y

Direction = 2
Actual Position = (2, 7)
Err = O

New Position planned = (3, 7)

Type = 3 has moved to (3, 7)

Environment Time = 45

Actor Al has new energy level = -70

New direction of actor Al is = 4

actor Al wants to move

Actual Environment Time = 45

New Environment Time = 46

ATTENTION: Actor Al has no more Energy!!!

Next Step Wanted (y/n)y

You want to close the window? (y/n)y

4.3.5 The Final Main Procedure

Here you can see the final main() procedure for the first milestone.®.

—*- coding: utf-8 —*-

gdh-winlO0.py

author: Gerd Doeben-Henisch

Trying a first environment

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H H

5There will be a direct download on the web-page too

41

def main():

import graphics as grph #Graphics onbjects from Zelle
import environment as env #Functions to generate grids
import numpy as np #numerical laibrary numpy
import acctor as acc #Acctor related functions

##

SET UP THE ENVIRONMENT

##

el=env.ENVOBJ(’env1’,0)

xmax = 700
700

ymax

win = grph.GraphWin(’ENVIRONMENT 1’, xmax, ymax)
win.setBackground (’HoneyDew’)

first =1 #First element of the list

last = 7 # Last element of the list used

distance = 100 #distance of two lines in thr grid
maxXcoord = 7 #size of the data array in the background
maxYcoord = 7

nobj = 20 #objects: percentage of the array space !
nfood =1 #food: percentage of the array space !

#generating the lines of the grid
env.grid(win,xmax, ymax, first, last, distance)

Fill the grid with spaces and objects
gr2=env.fillgridobj2(win,first, last, maxXcoord,maxYcoord,nobj)

Fill the grid with food
gr2=env.fillgridfood(win,first, last, maxXcoord,maxYcoord,nfood,gr2)

Introducing an actor for the event-loop
time=el.getClock() #Setting the time of ’birth’
a=input ("Please an x-coordinate (1-7) for the actor ")
b=input ("Please an y-coordinate (1-7) for the actor ")

x=int (a)

42

y=int (b)
dir=1

color = ’red’
label="A1"
energy=2000
energyrate=2

al=acc.ACTOBJ(label,time,x,y,dir,color, label,energy,energyrate)

al.setPos(x,y)

outputMessage="noMove’ #This will allow a move without interaction with
the actor

al.setOutputMessage (outputMessage)

env.introduceActor(x,y,dir,label,energy,distance,win)

##

START AN EVENT LOOP FOR THE ENVIRONMENT
##

ASK ACTOR BEHAVIOR FUNCTIONS WHAT TO DO
CHECK WETHER ACTIONS ARE POSSIBLE

MODIFY THE ENVIRONMENTR IF NECESSARY

REPEAT AS LONG AS ACTORS ARE ALIVE

##

condition for while

FINISH=100

while FINISH >0:

Look to the actor class for new responses
dir=al.getDir()

print(’Direction = ’, dir)

p=al.getPos()

print (’Actual Position = ’,p)

x0ld=p[0]

yold=p[1]

if al.getOutputMessage() == ’yesMove’:

If there are responses then compute the next possible move

43

Err, xnew, ynew = env.newPosition(dir,xold,yold)
print CErr = ’, Err)
print (’New Position planned = ’, (xnew,ynew))

#Check whether this new position is possible

if gr2[xnew-1,ynew-1] != 0O:

#Telling the actor that the planned new position is occupied
al.setInputMessage ("NoMove")

print(’actor =’,label,’ has not moved’)

else:

type=3 #actor

#First change position in data array
env.moveArray(type,xold,yold,xnew,ynew,gr2)

#Tell the actor his new position

al.setPos(xnew,ynew)

#Next change position in window

env.introduceActor (xnew,ynew,dir,label,energy,distance,win)
env.deleteActor(p,win)

else:

print (’No move wanted by actor.’)

Get the actual environment time

t2=el.getClock()
print (’Environment Time =’, t2)

#Call the actor

acc.behaviorAc(el,al)

The actor will compute i t’s response and will update the class

#counting FINISH down for to stop after finitely many steps
FINISH=FINISH-1

envClock = el.getClock()

print (’Actual Environment Time = ’,envClock)
envClock= envClock+1

el.setClock(envClock)

print (’New Environment Time = ’,envClock)

energy=al.getEnergy ()

44

if energy <O:
print (’ATTENTION: Actor ’,label,’ has no more Energy!!!’)

answer = input("Next Step Wanted (y/n)")
if answer == ’y’:

FINISH = FINISH #Repeat the Loop
else:
FINISH = -1 #Finish

answer = input("You want to close the window? (y/n)")

win.close()
main()

4.3.6 Final Helper Functions for the Environment

Here you can see the final version for Milestone 1 of the helper functions
used in the main() procedure.

—*- coding: utf-8 -*-

environment.py

author: Gerd Doeben-Henisch

Collection of functions to support simple enviroments

Using book from John Zelle (2002) and his simple graphics.py library

H OH HF H R

class ENVOBJ:
def __init__(self,name,clock):

self .name = name
self.clock = clock

def getName(self):
return self.name

def setName (self,name):
self .name = name

def getClock(self):
return self.clock

def setClock(self,clock):
self.clock = clock

45

def grid(win,xmax,ymax,first,last,distance):

import graphics as grph
import numpy as np

1x=1list(range(first,last+1))
linex = grph.Line(grph.Point(0,0), grph.Point(0,ymax-1))

for i in range(first,last):
1x[i]=linex.clone()

1x[i] .move(i*distance,0)
1x[i] .draw(win)

print (i)

ly=1list(range(first,last+1))
liney = grph.Line(grph.Point(0,0), grph.Point(xmax-1,0))

for i in range(first,last):
ly[i]l=1liney.clone()

1ly[i] .move(0,i*distance)
1ly[i].draw(win)

print (i)

def fillgridobj(win,first, last, xmax,ymax):
import graphics as grph
import numpy as np

Generate a matrix with a random distribution of ’0’ and ’1°.
gr2=np.random.randint (2, size=(last,last))

print (’MAP OF ARRAY \n’)
print (str(gr2))
print (’ATTENTION: Columns represent Rows on screen!\n’)

for y in range(0,7):

for x in range(0,7):

if gr2[x,y] == 1:

print (x+1,y+1)

rectl = grph.Rectangle(grph.Point (x*100,y*100), grph.Point ((x+1)*100, (y+1)*100))
rectl.setFill(’black’)

46

rectl.draw(win)

return gr2

def fillgridobj2(win,first, last, maxXcoord,maxYcoord,nobj):

#nobj gives the percentage how many objects shall be inserted into the matrix

import graphics as grph
import numpy as np

#Compute number of wanted objects by percentage

number=int (((maxXcoord*maxYcoord) /100) *nobj)

if number <1:

number=1

gr2=np.zeros ((maxXcoord,maxYcoord) ,int)

Produce randomly the coordinates of the wanted objects

for i in range(1,number):

p=np.random.randint(first,last+1,size=2) #coordinates for the fillgridobj
print(p)

gr2[pl0]-1,p[1]-1]1=1 # Set a marker in the data array

x=p[0]-1

y=p[1]-1

#translating the fillgridob coordinates into the graphics coordinates
rectl = grph.Rectangle(grph.Point (x*100,y*100), grph.Point ((x+1)*100, (y+1)*100))
rectl.setFill(’black’)

rectl.draw(win)

print (’MAP OF ARRAY \n’)

print(str(gr2))

print (’ATTENTION: Columns represent Rows on screen!\n’)

return gr2

def fillgridfood(win,first,last, maxXcoord,maxYcoord,nfood,gr2):

#n gives the numer of food inserted into the matrix

47

import graphics as grph
import numpy as np

number=int (((maxXcoord*maxYcoord) /100)*nfood)
if number <1:
number=1

for i in range(1,number+1):

p=np.random.randint(first,last+1l,size=2) #coordinates for the fillgridobj

print(p)

gr2[plol-1,p[1]1-11=2

#translating the fillgridob coordinates into the graphics coordinates

rectl = grph.Rectangle(grph.Point((p[0]-1)*100, (p[1]1-1)*100),grph.Point(p[0]*10(
rectl.setFill(’green’)

rectl.draw(win)

print (’OBSTACLES with FOOD \n’)

This conversion shows a matrix whose columns correspond to the
rows of the original matrix !

gr2s=str(gr2)
print (gr2s)

print (’anders \n’)

#This conversion shows rows after the conversion which correspnd
#to the columns in the original array !

gprint (gr2,last)
return gr2
def gprint(a,lasty):

#This conversion shows rows after the conversion which correspnd
#to the columns in the original array !

import numpy as np
g="n

for i in range(0,a.size):
s=s+str(a.item(i))

48

print(s)

for j in range(0,lasty):
print(’\n ’, s[(j*lasty):(j*lasty)+7])

#introduce actor in the window
def introduceActor(x,y,dir,label,energy,distance,win):

Convert array coordinates (x,y) into window coordinates (xwin,ywin)
import numpy as np
import graphics as grph

((x-1)*distance)+(distance/2)
((y-1)*distance)+(distance/2)

Xwin
ywin

#gnerate a red circle

center = grph.Point(xwin,ywin)

circ = grph.Circle(center, distance/2)
circ.setFill(’red’)

circ.draw(win)

#gnerate a name as a lable

name = grph.Text(center, "A1")

name.draw(win)

#Delete an actor on a certain position in the window

def deleteActor(p,win):

Convert array coordinates (x,y) into window coordinates (xwin,ywin)
import numpy as np

import graphics as grph

x=p[0]-1
y=pl1]-1

#translating the fillgridob coordinates into the graphics coordinates
rectl = grph.Rectangle(grph.Point (x*x100,y*100), grph.Point((x+1)*100, (y+1)*100))
rectl.setFill(’HoneyDew’)

rectl.draw(win)

#Move to new position in data array

49

def moveArray(type,xold,yold,xnew,ynew,gr2):
import numpy as np

gr2[xold-1,yold-1]1=0

gr2[xnew-1,ynew-1]=type

print (’Type =’,type,’ has moved to’,(xnew,ynew))

Compute a new position starting with an old position and a direction
def newPosition(dir,xold,yold):

xnew=xo0ld

ynew=yold
Err=0

if dir == 1:
if yold-1 < 1:
ynew = yold
else:
ynew=yold-1

elif dir == 2:
if xold+1 > 7:
xnew = xold
else:
xnew=xold+1
elif dir == 3:
if yold+1l > 7:
ynew = yold
else:
ynew=yold+1
elif dir == 4:
if xo0ld-1 < 1:
xnew = xold
else:
xnew=xold-1
else:

print (’ERROR : Wrong Direction ! 7)
Err=-1

return Err, xnew, ynew

4.3.7 Final Helpfer Funtions for Actors

Here you will find the final helper Functions for Milestone 1 for the actor(s).

50

—*- coding: utf-8 -*-

actor.py

author: Gerd Doeben-Henisch

Collection of functions to support simple actors

H O H H R

class ACTOBJ:

#The actor object has more propeties as a simple environment object.

def __init__(self,name,time,x,y,dir,color, label,energy,energyrate):

self .name = name

self.time = time
self.position = (x,y)
self.dir = dir

self.color = ’red’
self.label = label
self.energy = energy
self.energyrate = energyrate

def getName(self):
return self.name

def setName(self,name):
#The time will be derived from the environment time
self .name = name

def getTime(self):
return self.time

def setTime(self,time):
#The time will be derived from the environment time
self.time = time

def getPos(self):
This is the position in the data array with simple
return self.position

def setPos(self,x,y):

This is the position in the data array with simple
The array counts from O ... n-1

The user counts from 1 ... n

self.position = (x,y)

51

(x,y) coordinates

(x,y) coordinates

def setDir(self,dir):
There are four basic directions as {1,2,3,4}
self.dir = dir

def getDir(self):
There are four basic directions as {1,2,3,4}
return self.dir

def getColor(self):
All actors have the color red (for now; perhaps more later)
return self.color

def setColor(self,incolor):
All actors have the color red (for now; perhaps more later)
self.color = incolor

def setLabel(self,label):

#This should be a short name different from others; a numer
is enough ...

self.label = label

def getLabel(self):

#This should be a short name different from others; a number
is enough ...

return self.label

def setEnergy(self,energy):
Show actual energy level
self.energy = energy

def getEnergy(self):
Show actual energy level
return self.energy

def setEnergyRate(self,energyrate):
Show actual energy level
self.energyrate = energyrate

def getEnergyRate(self):

Show actual energy level
return self.energyrate

def setInputMessage(self,inputMessage):

52

#Some message from the env
self.inputMessage=inputMes

def getInputMessage(self):
return self.inputMessage

def setOutputMessage(self,
#Some message to the envir

ironment
sage

outputMessage) :
onment

self.outputMessage=outputMessage

def getOutputMessage(self)
return self.outputMessage

def behaviorAc(e,a):

import numpy as np
import environment as env
import acctor as acc

#BODY PART
Compute time since last

=]
:

a.getName ()

tl = a.getTime()

t2 = e.getClock()

erate = a.getEnergyRate()
ener = a.getEnergy()

dt = t2-t1
energynew = ener - (erate
a.setEnergy(energynew)

print (’Actor ’,name,’ has

#MENTAL PART
Determine the new direct

dirspace = 4

dirnew = np.random.randint
a.setDir(dirnew)

print (’New direction of ac

call and change energy level

* dt)

new energy level = ’,energynew)

ion

(1,dirspace+1)

tor ’,name, ’ is = ’,dirnew)

a.setOutputMessage (’yesMove’)

53

print (’actor ’,name, ’wants to move’)

5 Close Up

This text describes the experiment which has started Tuesday, 10.0ct.2017
about 14:00 and ended Saturday 14.0ct.2017 about 14:00h. At the begin-
ning | had no idea about python, only some ’pounds of disgust’ about such
an 'un-mathematical language’. But because the arguments to use it now
and really have become so ‘dense’ that | started this experiment.

The final point — perhaps — has been that we decided Tuesday Morn-
ing to use some kind of software for our music performance in Hamburg
at 9.Nov.2017 and that this perhaps could be done with python... The first
Milestone was planned for this week to check a simple actor-environment
scenario with graphical output.

As one can see now this has been solved.

| learned a lot about python but — as i learned too — this is only a small
fragment of those things which are possible with python.

| have to thank all the wonderful people who put t heir work with python
in the internet, first of all those who have programmed all the wonderful
tools which enable you to work with python in a productive way. | am really
enthusiastic about the package WinPython which includes the integrated
development environment 'spyder’. This is really great: not too overloaded,
but with everything you need. Thanks to those who did this!

The other point are the many sources in the internet. If | had a problem
| immediately found good answers and examples in the internet, the book
of John Zeller with his graphic library, the fantastic manuals of the python
language and numpy, different videos, many forums. Without all this free
stuff open science would nearly be impossible.

My work with python will continue (and will be shown here!).
One line of development will be the usage for our Philosophy-in-Concert
experiments where we are experimenting with new ways of composing and

performing.

The other line will be the development of more experiments around the
emerging-mind lab (emerging-mind.org). Part of this is the integration with

54

the ubuntu platform and the robot operating system (ros), although with
tensorflow.

The only reason that | still have windows and | am using windows is
that | am working with a music program called ’ableton live’ combined with
'Max4live’. Because | could not find any substitution for this in the ubuntu
world | am in need for windows (there are some programs trying to mimic
ableton live and Max4live but they are far, far weaker).

And there is a third line of development in the area of social, economi-
cal, and political simulations. Instead of wasting time with computer games
which cost you money but do not give you any kind of new knowledge it
could be a good approach to built up learning environments for the real
world with intelligent machines as your helpers.

Hope to see you again on this platform ... or elsewhere :-)

References

[Zel02] John M. Zelle. Python Programming: An Introduction to
Computer Science. Published by John Zelle, 100 Wart-
burg Blvd, Waverly, IA 50677, USA, 1 edition, 2002. URL:
http://www.leetupload.com/database/Misc/Papers/Python

55

