
EML ROS-Environment
Basic Ideas

emerging-mind.org eJournal ISSN 2567-6466

Gerd Doeben-Henisch
info@emerging-mind.org
gerd@doeben-henisch.de

Oct-5, 2017

1 Introduction

This text deals with the software ROS (Ros Operating System) as tool for
the emerging-mind lab software framework. One main application will be
for the Actor-Actor Interaction (AAI) paradigm of the uffmm.org project.

Taking the AAI theory as a first source for requirements we can infer the
following requirements for useful simulation tools:

AS: Built a mathematical graph for the actor story (AS). This will be called
actor-story graph (ASG)

ASSim: Built an actor story simulator which can read an actor-story graph
(ASG) as input. This simulator will be called AS-simulator (ASSim)

AM: Built actor models (AM) for selected actors.

AMSim: Built a actor model simulator (AMSim) which can take actor models
as inputs.

ASWP: Built an actor software platform (ASWP) which can manage an actor
story simulator with n-many distributed actor model simulators.

TPs: Enable the software platform to allow defined test protocols (TPs) to
check the behavior of AMSims with regard to an ASG.

INTr: Enable the ASWP to allow interactions of human actors with AMSims

1

Depending from the problem to be solved there is a great variety of ac-
tor stories and actor models possible.

The same holds for possible hardware and programming tools.

In this text the selection of the software has a clear bias: we want to
use software which fits to real world requirements too, not only to theoret-
ical considerations. With this bias there it is a good working hypothesis to
select the robot operating system (ROS) based on ubuntu 14.04 as a soft-
ware platform (SWP). This software platform enables from the beginning
distributed actor models (AMs) and test protocols (TPs). Depending from
the way of programming one can state further that the ubuntu+ROS SWP
offers built-in simulation power for AMSims as well as ASSims.

What has to be done from scratch that is the definition and construction
of ASGs as well as AMs.

To learn all these concepts we will stepwise examine the robot operat-
ing system running on ubuntu-linux.

Helpful websites are the following ones:

ubuntu: http://wiki.ros.org/indigo/Installation/Ubuntu or http://howtoubuntu.org/how-
to-install-ubuntu-14-04-trusty-tahr

ros: http://wiki.ros.org/indigo

linux tutorial(s): http://www.ee.surrey.ac.uk/Teaching/Unix/index.html

python: https://docs.python.org/3.4/

screen recorder: http://www.maartenbaert.be/simplescreenrecorder/

A helpful book for ROS is that by the authors of the ROS Quigley et.al.(2015)
[QGS15].

2 Concepts meet Concepts

Having the platform ubuntu and ros under your fingertips we want to ex-
plore, whether this platform really can do the job we want to do.

2

2.1 Simulated Robots

Before we go into the details of the platform and the concepts there is an
interesting idea presented in the book of Quigley et al., which offers a very
general perspective.

Although the final goal of ROS is to operate real robots connected to
human actors and different kinds of real systems the ROS can also support
simulated robots. It is a strong point of ROS that it makes not too much a
difference whether you are using only a software robot or a real robot. For
simulations you need simulation environments presented to the expert in
a graphical format. Generally you can connect many different such simu-
lation systems with ROS. One powerful simulator with the name ’gazebo’
comes with the ros distribution. It is contained in the gazebo ros package.
In the book it is described as follows: ”This package provides a Gazebo plu-
gin module that allows bidirectional communication between Gazebo and
ROS. Simulated sensor and physics data can stream from Gazebo to ROS,
and actuator commands can stream from ROS back to Gazebo. In fact,
by choosing consistent names and data types for these data streams, it is
possible for Gazebo to exactly match the ROS API of a robot. When this
is achieved, all of the robot software above the device-driver level can be
run identically both on the real robot, and (after parameter tuning) in the
simulator.”([QGS15]:p.94)

Thus for the goals of the AAI-theory this offers the perspective that one
can translate the concepts of the AAI-theory into software concepts realized
as simulations, which then can also be used for real world implementations.

2.2 AAI Graph

Within the AAI theory two basic concepts are the actor story (AS) and the
actor model (AM).

The actor story describes the complete process of practicing a task
within the space which is given by the problem statement of some stake-
holder. There can be several tasks which have to be considered and there
can be tasks in parallel or interrelated.

This set of tasks can be described with the aid of a mathematical graph
with extended properties (for details see the AAI-theory at uffmm.org). The
nodes of such an AAI-graph represent the state of affairs at a certain mo-
ment t of time. These states of affairs are called situations or scenes. A
scene is a collection of properties organized as subsets, which can be em-
bedded representing hierarchies. Different kinds of actors are then different

3

kinds of subsets of a scene. What can change a scene is either an event
caused by the context of actors or by some action of an actor. Events or
actions trigger therefor a change in the scene at time t and produce thereby
a new state of affairs at some time t+x on a time line. Thus the connections
between two scenes is an edge representing such an event or action. Ev-
ery scene can have more than one edge going out and coming in. In the
special case of a zero event or zero action no property is changing and the
scene stays ’unchanged’. In this case the outgoing edge can represent an
incoming edge too.

Before we discuss the concept of an actor model we will examine whether
and how the concept of an AAI-graph can be supported by the ROS.

2.2.1 ROS Graph

The main conceptual property of ROS is the network of processes which
can exchange messages.

Every such process is in ROS interpreted as a node in a graph, where
the messages are seen as edges which can travel from every node to every
other node. This is often called a peer to peer network. Typically a node
is a POSIX conform process and the messages are representing TCP con-
nections (cf. [QGS15]:pp.9ff). Furthermore a node is organized as a kind of
a framework called workspace. Inside of such a workspace you will find two
different things: (i) a section with source code defining the behavior of this
node and (ii) several kinds of other sections needed for the organization of
the node within the network as well as for the software build-processes.

To realize the the communication between the nodes there exists a spe-
cial process – a kind of a meta-node – called roscore, which allows the dif-
ferent ’normal’ nodes to contact the roscore and become registered in the
roscore for communication. Being registered a node can receive message
from other nodes or send messages.

2.2.2 AAI Graph meets ROS Graph

The interesting question now is, whether and how the AAI-graph and the
ROS-graph do match.

The answer is: they do match, but perhaps in a different way the reader
may expect.

4

The main point is that the network of nodes, communicating with each
other represent on a time line a sequence of different states of affairs.

At some time t on the time line we have a collection of nodes with certain
properties. When a communication happens this can trigger some change
in one of the nodes. In that case we have some time t+x where the proper-
ties in the collection of nodes have changed (or not, a special case).

Seen with the eyes of an AAI-theory the collection of nodes at some
time t in the ROS network all together represent a situation, a scene, which
represents a node in the AAI-graph. The different ROS-nodes are in the
AAI-graph subsets of a AAI-scene representing possible actors. Every
AAI-actor can have more subsets, representing a kind of a hierarchy. The
ROS-messages are in the AAI-graph possible events or actions caused
by AAI-actors. If such AAI-events or -actions change at least one prop-
erty then an AAI-scene changes and generates by this a new AAI-node.
Otherwise the AAI-scene continues. Because the properties of AAI-nodes
can change the whole AAI-Graph can change. This corresponds well to
the ROS-graph where nodes can be introduced during the process or can
disappear; clearly ROS-nodes can also change properties while they are
acting.

To be continued ’Building a simple ROS-graph’....

References

[QGS15] Morgan Quigley, Brian Gerkey, and William D. Smart. Program-
ming Robots with ROS. O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472, 1 edition, 2015.

5

