
1

. . . T H E D E S I G N E R O F A N E W S Y S T E M M U S T N O T O N LY B E T H E I M P L E -

M E N T O R A N D T H E F I R S T L A R G E - S C A L E U S E R ; T H E D E S I G N E R S H O U L D

A L S O W R I T E T H E F I R S T U S E R M A N U A L . . . I F I H A D N O T PA R T I C I PAT E D

F U L LY I N A L L T H E S E A C T I V I T I E S , L I T E R A L LY H U N D R E D S O F I M P R O V E -

M E N T S W O U L D N E V E R H AV E B E E N M A D E , B E C A U S E I W O U L D N E V E R H AV E

T H O U G H T O F T H E M O R P E R C E I V E D W H Y T H E Y W E R E I M P O R TA N T.

D O N A L D E . K N U T H

G E R D D O E B E N - H E N I S C H , L O U W R E N C E E R A S -

M U S

A C T O R A C T O R I N T E R -
A C T I O N [A A I] W I T H I N
S Y S T E M S E N G I N E E R -

I N G (S E)
A N A C T O R C E N T E R E D A P P R O A C H T O P R O B L E M S O LV I N G I N E N G I N E E R I N G
C O M B I N I N G E N G I N E E R I N G A N D P H I L O S O P H Y

V E R S I O N 2 2 . J U LY 2 0 1 8

U F F M M . O R G

Copyright © 2018 Gerd Doeben-Henisch, Louwrence Erasmus

PUBLISHED BY UFFMM .ORG

UFFMM .ORG

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means except for brief quotations in printed reviews, without the prior permission of the publisher.

First printing, July 2018

Contents

Preface 11

1 Introduction 13

2 Actor-Actor Interaction Analysis 17

3 Actor Story (AS) 19

4 Actor Model (AM) 27

5 Simulation 39

6 Algorithmic Verification 43

7 Physical Design 45

8 Usability Testing 47

9 AS-AM Philosophy 51

10 Looking Forward 57

Bibliography 59

Index 63

List of Figures

1.1 Engineering process with different kinds of actors 14

3.1 Change event between two states 23

3.2 Change event with an embedded actor 26

4.1 Basic Typology of Input-Output Systems 30

4.2 Electronic door example - bare graph, only nodes 35

4.3 aai-example electronic door: nodes and minimally labeled edges 35

4.4 aai example electronic door with nodes, edge-labels, and properties 35

4.5 aai example with a complete graph (only the edge labels are shortened) 35

4.6 Graph with complete start state folowed by difference states based on la-

belled edges 36

5.1 Creation of the symbolic space by AAI-experts 39

9.1 The actor story (AS) and the actor models (AMs) as symbolic representa-

tions constituting a symbolic space 52

9.2 Creation of the symbolic space by AAI-experts 53

9.3 The symbolic space extended with simulators translated into the physical

space with physical actors as well as physical assistive actors 54

9.4 The intended actors of an actor story (AS) are living as real actors usually

in more than one actor story 55

9

Dedicated to those who gave us the prior

experience and the inspiring ideas to be

able to develop the view offered in this

book.

Preface

AAI, SE, AI, Philosophy This book is our first trial to bring together such

diverse topics as ’Human-Machine Interaction (HMI), Systems Engineering

(SE), Artificial Intelligence (AI), and Philosophy of Science (PoS) in one co-

herent framework called Actor-Actor Interaction within systems Engineering

(AAI-SE) .

Overview of the book The book starts with an introduction presenting all

key ideas and how they will form, step by step, a big picture. Then you can

dig into each of the topics with more details and with more examples, com-

mented by historical backgrounds and actual discussions in the community.

At the end of the book you will find first case studies illustrating how the new

framework can be applied to real-world problems. With the final index of key

terms you will be able to find the passages in the book where these terms

are used.

About the web site After the publication of this book the accompanying

website https://www.uffmm.org/ of the book will offer additional material

for the community.

Acknowledgements This book has a long ’conceptual history’ leading back

to the Philosophy-of-Science studies of Doeben-Henisch 1983 - 1989 in

Munich under the guidance of Peter Hinst1, many intensive discussions 1 He died 10.May 2018.

between Doeben-Henisch and Erasmus about Systems engineering since

1999, a paper written by Doeben-Henisch and Wagner 2007 2 with ongoing 2 G. Doeben-Henisch and M. Wagner. Valida-
tion within safety critical systems engineer-
ing from a computational semiotics point of
view. Proceedings of the IEEE Africon2007
Conference, pages Pages: 1 – 7, 2007. DOI :
10.1109/AFRICON.2007.4401588

discussions since then, a lecture by Doeben-Henisch about formal specifica-

tion and verification in 2010 3, two papers by Erasmus and Doeben Henisch

3 Gerd Doeben-Henisch. Formal Specifi-
cation and Verification: Short Introduction.
Gerd Doeben-Henisch, 2010

in 2011 4, more than 22 regular semesters with the topic Human-Machine In-

4 Louwrence Erasmus and Gerd Doeben-
Henisch. A theory of the system engineering
process. In 9th IEEE AFRICON Conference.
IEEE, 2011a; and Louwrence Erasmus
and Gerd Doeben-Henisch. A theory
of the system engineering management
processes. In ISEM 2011 International
Conference. ISEM, 2011b. Conference 2011,
September 21-23, Stellenbosch, South
Africa

teraction by Doeben-Henisch at the Frankfurt University of Applied Sciences

(Frankfurt, Germany)(unpublished) in the timespan 2005 - 2018, two regular

semesters with the topic AAI together with Tuncer in SS2016 and WS2016

at the Frankfurt University of Applied Sciences (Frankfurt, Germany) (unpub-

lished), and two workshops with Erasmus in summer 2016 and Spring 2017

(unpublished). Additionally discussions between Doeben-Henisch and Idrissi

about AI and AAI since 2015.

https://www.uffmm.org/

1

Introduction

THE TERM ’ACTOR-ACTOR INTERACTION (AAI) ’ as used in the title of

the book is not yet very common. Better known is the term ’HMI’ (Human-

Machine Interaction) which again points back to the term ’HCI’ (Human-

Computer Interaction). Looking to the course of events between 1945 and

about 2000 one can observe a steady development of the hardware and the

software in many directions.1 1 For a first introduction see the two human-
computer interaction handbooks from 2003
and 2008, and here especially the first
chapters dealing explicitly with the history
of HCI (cf. Richard W.Pew (2003) , which
is citing several papers and books with
additional historical investigations (cf. p.2),
and Jonathan Grudin (2008) . Another
source is the ’HCI Bibliography: Human-
Computer Interaction Resources’ (see:
http://www.hcibib.org/), which has a
rich historical section too (see: http://
www.hcibib.org/hci-sites/history).

Richard W. Pew. Introduction. Evolution of
human-computer interaction: From memex
to bluetooth and beyond. In J.A. Jacko and
A. Sears, editors, The Human-Computer
Interaction Handbook. Fundamentals,
Evolving Technologies, and emerging
Applications. 1 edition, 2003; and Jonathan
Grudin. A Moving Target: The Evolution of
HCI. In A. Sears and J.A. Jacko, editors, The
Human-Computer Interaction Handbook.
Fundamentals, Evolving Technologies, and
emerging Applications. 2 edition, 2008

One can observe an explosion of new applications and usages of com-

puter. This caused a continuous challenge of how human persons can

interact with this new technology which has been called in the beginning ’Hu-

man Computer Interaction (HCI)’. But with the extension of the applications

in nearly all areas of daily live from workplace, factory, to education, health,

arts and much more the interaction was no longer restricted to the ’tradi-

tional’ computer but interaction happened with all kinds of devices which

internally or in the background used computer hardware and software. Thus

a ’normal’ room, a ’normal’ street, a ’normal’ building, a toy, some furniture,

cars, and much more turned into a computerized device with sensors and

actuators. At the same time the collaborators of human persons altered

to ’intelligent’ machines, robots, and smart interfaces. Thus to speak of a

’human user’ interacting with a ’technical interface’ seems no longer to be

appropriate. A more appropriate language game is the new talk of ’inter-

acting actors’, which can be sets of different groups of actors interacting in

some environment to fulfill a task. Actors are then today biological systems

(man as well as animals) and non-biological systems. Therefor we decided

to talk instead of Human-Machine Interaction (HMI) now of ’Actor-Actor

Interaction (AAI)’.

THE TERM ’SYSTEMS ENGINEERING (SE)’ is well known in the area of

engineering,2 but not necessarily in connection with the new Actor-Actor- 2 For a first introduction cf. INCOSE (2015)

INCOSE. SYSTEMS ENGINEERING
HANDBOOK. A GUIDE FOR SYSTEM
LIFE CYCLE PROCESSES AND ACTIV-
ITIES. John Wiley & Sons, Inc, Hoboken,
New Jersey, 4 edition, 2015

Interaction paradigm. Our motivation to combine the AAI-view with the

Systems Engineering view was stimulated by the question whether there

exists a framework for AAI analysis which provides all the parameters which

an AAI analysis needs.

In systems engineering (cf. figure 1.1) it is common to assume an expert

as part of a systems engineering process who takes a problem description

Dp from a stakeholder, and does some analysis-work to find an optimal

solution candidate for the problem. Content of this analysis is the task which

http://www.hcibib.org/
http://www.hcibib.org/hci-sites/history
http://www.hcibib.org/hci-sites/history

14 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

has to be solved as well as the different kinds of actors, which are involved

in this task. Therefore the term Actor-Actor Interaction analysis.

Figure 1.1: Engineering process with
diferent kinds of actors

One level above the expert doing the analysis we have the manager

of the systems engineering process, who is setting the framework for the

process and who has to monitor its working.

Another upper level is the philosopher of science who is looking onto the

managers, processes, and their environments and who delivers theoretical

models to describe these processes, to simulate and to evaluate these.

In this text the Actor-Actor Interaction (AAI) analysis is the subject matter

of the expert doing the AAI-analysis work.

FOR THE ACTOR-ACTOR INTERACTION (AAI) ANALYSIS AS PART OF A

SYSTEMS ENGINEERING PROCESS (SEP) the following highly idealized

structure is assumed.3. 3 for the historical motivation of this ap-
proach see the before mentioned papers
from Erasmus, Doeben-Henisch, and
Wagner.AAIA(x) i f f (1.1)

x = 〈A, D, DP, DAAR, MSR, Mσ, Mν, MDInt f , M∗DInt f , δ〉
A := Set o f actors

D := Set o f documents

DP := Set o f problem documents

MSR := Set o f behavior models

Mσ := Set o f simulator models

Mν := Set o f algorithmic veri f ication models

MDInt f := Set o f real inter f aces

M∗DInt f := Set o f optimized real inter f aces

δ = α⊗ β⊗ σ⊗ π ⊗ γ⊗ o

α : A× D 7−→ DP

β : A× D× DP 7−→ MSR

INTRODUCTION 15

σ : A× D×MSR 7−→ Mσ

ν : A× D×MSR 7−→ Mν

γ : A× D×MSR × DAAR 7−→ MDInt f

ω : A× D×MSR × DAAR ×MDInt f 7−→ M∗DInt f

This description hides many details but provides enough information to

locate the AAI analysis within a systems engineering process.

Thus an actor-actor interaction analysis assumes a set of actors A
(stakeholders, experts, ...) and some knowledge represented in documents

D which then will be mapped by a process called α into a problem doc-

ument DP which contains besides different informations non-functional

requirements too. As language used fo the generation of the problem

document an everyday language L0 is assumed.

Again, actors, knowledge documents as well as the problem document

will then be mapped with a process called β into a behavior model MSR. A

behavior model will include an actor story (AS) as well as (optionally) many

actor models (AMs). The actor story represents all necessary functional

requirements (FR) of the problem and it can include a set of non-functional

requirements (NFR) distributed throughout the whole actor story. Thus we

have MSR = AS ∪ AM. The actor story will be presented in multiple modes.

First in a textual mode written in some everyday language L0. This textual

mode will then be translated into two different modes: in a mathematical

mode with language Lε and into a pictorial mode with a pictorial language

Lpict. The pictorial mode can be used as an artificial model of meaning for

the mathematical mode. One needs some mapping (used as a ’lexicon’)

between an actor story ASpict in pictorial mode and an acor story ASε in

mathematical mode.

Based on the mathematical mode of an actor story ASε one can convert

the actor story ASε with an algorithm into an automaton Mα which can be

run on an appropriate computer as a simulation. The combination of this

automaton Mα with an appropriate computer we call a simulator model Mσ.

The whole process preparing a behavior model MSR as a simulator model

is called σ.

Another helpful process is the process named ν. It translates a behavior

model MSR with the aid of a temporal logic language LTL and an appropri-

ate algorithm α into a algorithmic verification model Mν, which can compute

the occurrence or non-occurrence of a certain property in the space of possi-

ble states of the behavior model. This capability of deciding the occurrence

or non-occurrence of certain properties is especially helpful in the case

of non-functional requirements. Because non-functional requirements are

usually defined by decidable properties attached in a distributed manner to

a behavior model such a automatic verification process can check exactly

these distributed properties.

To test the usability of the behavior model one has to translate the logical

concept of the assistive actors serving as interfaces into a physical appear-

ance of the assistive actors and during this translation in a process called γ

one has to use knowledge from the actor-actor induced requirements (AAR)

as well as knowledge from Psychology to design a physical appearance of

16 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

the assistive actors MDInt f which can be tested by real users functioning as

executive actors.

Finally, to get real data from real users for a usability test one has to

arrange an experimental setting whereby a real user – corresponding to

the assumed AAR profiles – is challenged to do the required task(s) of the

problem. This behavior is kept in a protocol. After this objective part of the

test the user is invited for a small questionnaire to write down his judgments

regarding his feelings during the test as well as the circumstances of his

feelings. Observation protocols and questionnaires of a set of n test-persons

(n = {5 - 9}) will then be evaluated. After this evaluation the developer team

can consider some possible improvements, and – if improvements have

been realized – the tests can be repeated with new test-persons. This whole

procedure of (testing - improvements) can be repeated several times; at

least three times. How many repetitions are finally ’optimal’ is actually an

open question. It depends to a high degree from the parameter measuring

the learning capacity of the test persons. How often should one test a

test-person and in which timely distance between each test? The whole

evaluation process with all possible repetitions is called the ω-process.

PHILOSOPHY OF THE AAI-EXPERT The ’Philosophy of the AAI-Expert’ is

centering around the findings of modern Biology and Psychology. Its aim is

to explain why a human expert is able to use a formal language, here the set

theoretical language Lε, to talk about his experiences of the empirical world.

What Biology and Psychology are telling us is that the communication of the

experts is grounded in their cognitive machinery embedded in their brains.

Because the human brain in the body is not directly interacting with the

outside world but mediated by sensors and actuators the brain constructs

an inner model of the outside world. And it are exactly the properties of this

’inner model’ which provide a ’point of reference’ for all our thinking and

talking. For more details see chapter 9 ’AS and AM Philosophy’.

One conclusion from these considerations is that the reality for a human

person is basically given as a stream of neural events, partially translated

into phenomena of the consciousness, which can be divided in distinguish-

able situations, called states. A state is understood as a set of properties

embedded in a three-dimensional space. If at least one property changes a

state changes. Subsets of properties can be understood as objects, which

in turn can be subdivided into ’actors’ and ’non-actors’. Actors can ’sense’

their environment and they can ’respond’. More distinctions are possible as

needed.

This, to understand how an AAI-expert perceives his world, generates

internal models, and how he is communicating with others, this is the subject

for a philosophical grounding of the following AAI analysis theory.

2

Actor-Actor Interaction Analysis

In the following text we describe the actor-actor interaction analysis –

short: AAI analysis – by following the schema 1.1 from the introduction. On

account of the inherent complexity of some of these themes we dedicate for

these complex topics complete chapters.

Problem Document

According to the schema 1.1 the first sub-process is given by the process

’α : A× D 7−→ DP’. This process generates a problem document DP. This

is the result of a communication process between some stakeholders (SH)

and some experts (EXP) who represent different kinds of actors A. The

original problem P, which a stakeholder wants to be solved, is assumed to

be described in some introductory document D.

Due to the fuzziness of human communication one has to assume to

a certain degree a semantic gap with regard to the participants of the

communication which generated the problem document as well as for

potential readers of the problem document.1 1 For an early discussion of one of the
authors about the semantic-gap problem
see Doeben-Henisch & Wagner (2007) .

G. Doeben-Henisch and M. Wag-
ner. Validation within safety critical
systems engineering from a computa-
tional semiotics point of view. Proceed-
ings of the IEEE Africon2007 Confer-
ence, pages Pages: 1 – 7, 2007. DOI :
10.1109/AFRICON.2007.4401588

Additionally to the problem described in the problem document DP a

finite set of special constraints (C) can be given in this document too, which

correspond to the traditional ’non-functional requirements (NFR)’. Non-

functional requirements are those which describe properties of a whole

process, which can not be recognized by an individual, isolated property

alone. Examples are ’safety’, ’security’, ’cost efficiency’, ’barrier freeness’,

’competitive with regard to a certain market’, ’reliability’, etc. To apply such

non-functional requirements one has to define a set of operational criteria

which all-together represent a non-functional requirement. This set of

operational criteria must be associated with that process – called ’actor

story (AS)’ (see below) –, which realizes the intended problem. If the criteria

are all ’satisfied’ then the non-functional requirement is fulfilled, otherwise

not.

Check for AAI-Analysis

The problem given in a systems engineering process must not necessarily

be appropriate for an AAI analysis. Therefore it makes sense to do some

test in advance whether the problem in a problem document DP is fitting to

18 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

an AAI analysis. Such a test of the problem in a problem document checks

for the occurrence of the following properties:

1. Does the problem include at least one task (T) to be realized to reach a

solution?

2. Does the problem include an environment (ENV) for the task?

3. Does the problem include at least one executive actor (ExecA) as the

intended user, which shall use some technology as an assistive actor

(AssisA) – often called interface – to run the task?

If all three question will be answered affirmatively then the problem can

be analyzed within an AAI analysis.

Behavior Model

Following the schema 1.1 further we meet the next sub-process called beta

β : A × D × DP 7−→ MSR. This process generates a behavior model

MSR which includes all information which is necessary to realize the task(s)

necessary for the realization of the intended problem.

Looking deeper into the structure of the behavior model one meets a

rather complex conceptual machinery for which we will dedicate individual

chapters.

1. The first chapter called actor story (AS) describes a process rooted

in a series of connected states which together represent – like a story

– the necessary situations which have to be run through to reach the

characterized goal states of the process. The actor story represents

all necessary functional requirements (FR) of the problem and it can

include a set of non-functional requirements (NFR) distributed throughout

the whole actor story. The actor story will be presented in multiple

modes. First in a textual mode written in some everyday language L0.

This textual mode will then be translated into two different modes: in a

mathematical mode with language Lε and into a pictorial mode with a

pictorial language Lpict. The pictorial mode can be used as an artificial

model of meaning for the mathematical mode. One needs some mapping

(used as a ’lexicon’) between an actor story ASpict in pictorial mode and

an acor story ASε in mathematical mode.

2. The second chapter describes – optionally – actor models (AM). These

are models of behavior of actors which are part of the actor story. An

actor model characterizes the overt behavior of an actor by the construc-

tion of an explicit behavior function rooted in the internal states (IS) of an

actor. The concept of the actor model allows the introduction of the topic

of artificial intelligence (AI) dealing with that subset of actor models which

represent intelligent behavior as well as learning behavior. ’Intelligence’

and ’learning’ are two independent properties!

3

Actor Story (AS)

First Concepts

HOW IT STARTS : As described in the chapter 2 ’AAI analysis’ the starting

point for an AAI analysis is a problem document DP which describes in

a first way which kind of a problem a stakeholder wants to be solved. As

identifying criteria whether the problem at hand is appropriate for an AAI

analysis are mentioned the existence of at least one task, an associated

environment, at least one assistive and executive actor and optionally some

non-functional requirements.

Following this setting this chapter is dedicated to the construction of a

behavior model MSR which is assumed to consist of an actor story (AS) as

well as – optionally – actor models (AMs). Actor models are discussed in the

next chapter.

ACTOR STORY CONCEPT: The concept of the actor story (AS) is inspired

by the fact that every task can be understood as a sequence of situations –

here also called states – which are connected by events which cause some

change in a given state. It is assumed that there is at least one start state

and at least one goal state which represents the ’solution’ of the task.

A state representing some situation is understood as a set of properties,

which either can be verified in a real given situation or which are candidates

to be able to become verified in a real situation. The last case is typical

for properties in a state sequence which describes a possible sequence

of some conceivable future. State descriptions which are considered as

impossible to be become decidable in a real situation are not accepted as

possible states.

Subsets of properties in a state can be understood as objects. Special

kinds of objects are actors which are input-output systems (IOSYS) which

can perceive some properties of the state they are in as possible inputs (I)

as well they are able to produce some output (O) which can be an event

which causes some change with regard to the properties of the state.

3RD PERSON V IEW : The point of view underlying the description of an actor

story AS is the so-called 3rd-person view. This means that all participating

objects and actors are described from their outside. If an actor acts and

changes some property through it’s action it is not possible in a 3rd-person

20 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

view to describe the inner states and inner processes, that enabled the actor

to act and why he acts in this way. To overcome the limits of a 3rd-person

view one has to construct additional models called Actor Models (AMs) as

described in the next chapter.

FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS : The actor

story represents all necessary functional requirements (FR). For non-

functional requirements see non-functional requirement (NFR) see chapter 6

’Algorithmic Verification’.

MULTIPLE MODES : The actor story will be presented in multiple modes.

First in a textual mode written in some everyday language L0. This textual

mode will then be translated into two different modes: in a mathematical

mode with language Lε and into a pictorial mode with a pictorial language

Lpict. The pictorial mode can be used as an artificial model of meaning for

the mathematical mode. One needs some mapping (used as a ’lexicon’)

between an actor story ASpict in pictorial mode and an acor story ASε in

mathematical mode.

From this one can derive that these different modes intended to represent

possible meanings with symbolic expressions have as their primary point

of reference the ’mental ontology ’ DATontol of the AAI experts. 1 While 1 For more details see the chapter 9 called
’AS and AM Philosophy’the mental ontology is assumed to be ’the same’ for all different modes

of symbolic articulation2, the different modes of articulation can express 2 Which is a highly idealistic assumption in
case of learning systemsdifferent aspects of the same mental ontology more highlighted than in other

modes of symbolic articulation.

In the case of expressions of some ’everyday language’ L0 like German

or English we have only symbols of some alphabet, concatenated to strings

of symbols or articulated as a stream of sounds. Thus an understanding

of the intended meaning is completely bound to the mental encoding of

these expressions, eventually associated with some other clues by body-

expressions, mimics, special contexts, and the like.

If we would use a ’pictorial language’ Lpict as in a comic strip, we would

have again some strings of symbols but mostly we would have sequences

of two-dimensional drawings with the symbols embedded. These drawings

can be very similar to th perceptual experience of spaces, objects, spatial

relations, timely successes, and more properties which somehow ’directly’

encode real situations. Thus the de-coding of the symbol expressions is

associated with a strong ’interpretation’ of the intended situations by ’world-

like pictures’. In this sense one could use such a pictorial language as a

’second hand ontology’ for the encoding of symbolic expressions into their

intended meaning.

But for the intended engineering of the results of an AAI analysis neither

the everyday language mode L0 nor the pictorial language mode Lpict is

sufficient. What is needed is a ’formal language’ Lε which can easily be

used for logical proofs, for automated computations, as well as for computer

simulations. One good candidate for such a formal language is a language

using mathematical graphs which are additional enriched with formal

expressions for properties and changes between states. This allows an

automatic conversion into automata which can simulate all these processes.

ACTOR STORY (AS) 21

Additional one can apply automatic verification for selected properties, e.g.

for non-functional requirements!

From this we derive the following main modes of an actor story in this

text: (i) Everyday language L0(here English), (ii) Pictorial language Lpict

(in this version of the text not yet defined), (iii) Formal langauge Lε, (iv)

Converted automaton αLε out of the formal language, which can simulate

the actor story.

The additional actor models described after the actor story can be seen

as special extensions of the actor story and have to be included in the

simulation mode. This is straightforward but has also not yet been included

in this version of the text.

Textual Actor Story (TAS)

An actor story AS in the textual mode is a text composed by expressions

of some everyday language L0 – default here is English LEN –. This text

describes as his content a sequence of distinguishable states. Each state s
– but not an end-state – is connected to at least one other follow-up state s′

caused by the change of at least one property p which in the follow up state

s′ either is deleted or has been newly created.

Every described state s is a set of properties which can be sub-distinguished

as objects (OBJ) which are occurring in some environment (ENV). A special

kind of objects are actors (As). Actors are assumed to be able to sense

properties of other actors as well as of the environment. Actors are also

assumed to be able to respond to the environment without or with taking

into account what happened before.

Actors are further sub-divided into executive actors as well as assistive

actors. Assistive actors Aassist are those who are expected to support the

executive actors Aexec in fulfilling some task (t) (with t ∈ T).

A task is assumed to be a sequence of states with a start state sstart

and a goal state sgoal , where the goal-state is an end state. The set of

states connecting the start and the goal state is finite and constitutes a path

p ∈ P. There can be more than one path leading from the start state to

the goal state. The states between the start and the goal state are called

intermediate states.

Every finished actor story has a least one path.3 3 To turn a textual actor story into an audio
actor story (AAS) one can feed the text into
a speech-synthesis program which delivers
spoken text as output.Pictorial Actor Story (PAS)

In case of an textual actor story (TAS) – as before explained – one has a set

of expressions of some common language L0. These expressions encode a

possible meaning which is rooted in the inner states (IS) of the participating

experts. Only the communicating experts know which meaning is encoded

by the expressions.

This situation – labeled as semantic gap – can cause lots of misunder-

standings and thereby errors and faults.

To minimize such kinds of misunderstandings it is a possible strategy

to map these intended meanings in a pictorial language Lpict which has

sufficient resemblances with the intended meaning. Replacing the textual

22 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

mode by a story written with a pictorial language Lpict can show parts of the

encoded meaning more directly.

As one can read in the section 1 ’Philosophy of the View-Point’ (and in

the figure ??) the world of objects for a standard user is mapped into a

spatial structure filled with properties, objects, actors and changes. This

structure gives a blue-print for the structure of the possible meaning in an

observer looking to the world with a 3rd-person view. Therefore a pictorial

language can substitute the intended meaning to some degree if the picto-

rial language provides real pictures which are structurally sufficient similar to

the perceived visual structure of the observer.

To construct a pictorial actor story (PAS) one needs therefore a map-

ping of the ’content’ of the textual actor story into an n-dimensional space

embedded in a time line. Every time-depended space is filled with objects.

The objects show relations within the space and to each other. Objects

in space, the space itself, and the changes in time are based on distin-

guishable properties. To conserve a consistency between the textual and

the pictorial mode one needs a mapping between these both languages:

π : L0 ←→ Lpict.

Mathematical Actor Story (MAS)

To translate a story with spatial structures and timely changes into a math-

ematical structure one can use a mathematical graph γ extended with

properties Π and changes Ξ for encoding.

A situation or state q ∈ Q given as a spatial structure corresponds in a

graph γ to a vertex (also called ’node’) v, and a change ξ ∈ Ξ corresponds

to a pair of vertices (v, v′) (also called an ’edge’ e ∈ E).

If one maps every vertex v ∈ V into a set of property-expressions

π ∈ 2LΠ with λ : V 7−→ 2LΠ and every edge e ∈ E into a set of

change-expressions LΞ with ε : E 7−→ 2LΞ then a vertex in the graph

γ with the associated property-expressions can represent a state with all

its properties and an edge e followed by another vertex v′ labeled with a

change-expression can represent a change from one state to its follow-up

state.

A graph γ extended with properties and changes is called an extended

graph γ+.

Thus we have the extended graph γ+ given as:

γ+(g) i f f g = 〈V, E, LΠ, Lχ, λ, ε〉 (3.1)

E ⊆ V ×V (3.2)

λ : V −→ 2LΠ (3.3)

ε : E −→ 2LΞ (3.4)

The occurrence of a change is represented by two vertices v, v′ con-

nected by an edge e as e : {v} 7−→ {v′}. The follow-up vertex v′

has at least one property-expression less as the vertex v or at least one

property-expression more. This change will be represented in a formal

change-expression ε ∈ Lχ containing a list of properties to be deleted as

d : {p1, p3, ...} and properties to be newly created as c : {p2, p4, ...}.

ACTOR STORY (AS) 23

Figure 3.1: Change event between two
states

The deletion-operation is shorthand for a mapping of subtracting

property-expressions like d : {s} 7−→ s− {p1, p3, ...} and the creation-

operation is shorthand for a mapping of adding property-expressions like

c : {s} 7−→ s ∪ {p2, p4, ...}. Both operations are processed in a certain

order: first deletion and then addition, change = d⊗ c.

These conventions define the actor story as formal mathematical graph

enhanced by formulas form properties and formal expressions for changes.

Objects and Actors Every assumed object o ∈ OBJ attached to a vertex

represents a sub-set of the associated properties. An actor a ∈ A is a

special kind of object by A ⊆ OBJ.

1. Generally it is assumed that there exists some ’domain of reference’ DR

which corresponds to a situation/ state of an actor story.

2. For every ’object’ in DR one can introduce a ’name’ realized as a string

of ’small alphanumeric letters’ beginning with a ’capital letter’. Names are

a subset of terms. Examples: ’Hobbes’, ’U2’, ’Moon’,

3. Mappings from distinct objects into other distinct objects which have

all to be objects of DR are called ’functions’ realized as a string of

’small alphanumeric letters’ followed by n-many terms enclosed in

brackets. Functions are as well a subset of terms. Examples: ’add(3,4)’,

’push(Button1)’, ...’.

4. ’Properties’ Π are relations between objects in an assumed ’domain of

reference’ DR. The properties are symbolically represented by property

expressions LΠ which are realized by n-many terms functioning as ’argu-

ments’ of n-ary ’predicates’. Thus a property-expression is a sequence of

an n-ary ’predicate’ as a string of ’big alphanumeric letters’ enriched with

the ’-’-sign followed by n-many terms as arguments enclosed in brackets.

Example: ’USER(U1)’, ’SCREEN(S)’, BUTTON(B1)’, ’IS-PART-OF(B1,S)’,

’ON(push(B1))’, ...

24 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

5. As stated above there exists a mapping from states into sets of property

expressions written as λ : V −→ 2LΠ

1. A change in the domain DR happens when at least one property disap-

pears or emerges. To express this symbolically one has to assume (as

stated above) that there are two formal states v, v′ each with property

expressions Lv
Π, Lv′

Π and the property expressions from follow-up state

v′ are generated by applying a ’change-action’ realized as a function

α ∈ ACT to the preceding state v. The change action has a ’name’

realized by a string of ’small alphanumeric values’ followed by a ’delete

function’ named ’delete’ (or short ’d’) and then by a ’creation function’

named ’create’ (or short ’c’). Thus the change action α is a concate-

nated operation α = d() ⊗ c(). The arguments of the delete- and

create-function are property expressions.

2. Example: if there is a set of property expressions Lv
Π = {SCREEN(S), BUTTON(B1), NOT−

PRESSED(B1)} and a change action α(Lv
Π) with the sub-functions

d(NOT − PRESSED(B1)) and c(PRESSED(B1)) then the resulting

follow-up property set looks like Lv′
Π = {SCREEN(S), BUTTON(B1), PRESSED(B1)}

3. The complete change expression will be realized as a ’list’: 〈v, v′, α, d(p1, ..., pn), c(p1, ..., pm)〉.
This reads: a change action with name α has been applied to state v and

generates a new state v′ by (i) copying the properties from state v to

state v′, then (ii) deletes the properties (p1, ..., pn) in v′, and then (iii)

creates the properties (p1, ..., pm) in v′. The result of applying (i) - (iii) to

the old state v generates the new state v′.

4. Thus change statements are terms derived as a subset as follows:

ε ⊆ V × V × ACT ×ΠNat ×ΠNat (with Nat as the natural numbers

including 0).4 4 The default assumption is that either the
delete or the create function has to have at
least one property argument.5. If there is in one state v more than one action possible than more than

one change statement is possible. This results in more than one edge

leading from state v to n-many follow-up states v′1, ..., v′n.

6. Additional to the names of possible objects we assume a special opera-

tor ’not(n)’ applied to a name ’n’. The meaning of the operator is, that in

this case not the name ’n’ is valid, but the ’absence’ of the object signified

by the name n’. This is important because otherwise in case of many

alternative options one has to enumerate all alternatives to an object

named ’n’.

Correspondence between mathematical and pictorial modes To keep the

consistency between a mathematical and a pictorial actor story one needs a

mapping from the pictorial actor story into the mathematical actor story and

vice versa, mp.m : Lpict ←→ Lmath.

Task Induced Actor Requirements (TAR)

Working out an actor story in the before mentioned different modes gives an

outline of when and what participating actors should do in order to realize a

planned task.

ACTOR STORY (AS) 25

But there is a difference in saying what an actor should do and in stating

which kinds of properties an actor needs to be able to show this required

behavior. The set of required properties of an actor is called here the

required profile of the actor A RPro fA. Because the required profile is

depending from the required task, the required profile is not a fixed value.

In the general case there are at least two different kinds of actors: (i) the

executing actor Aexec and (ii) the assistive actor Aassis. In this text we limit

the analysis to the case where executing actors are humans and assistive

actors machines.

Actor Induced Actor Requirements (AAR)

Because the required profile RPro frequ of an executive actor realizing a

task described in an actor story can be of a great variety one has always to

examine whether the available executing actor Aexec with its available profile

RPro favail is either in a sufficient agreement with the required profile or not,

σ : RPro frequ × RPro favail 7−→ [0, 1].
If there is a significant dis-similarity between the required and the avail-

able profile then one has to improve the available executive actor to ap-

proach the required profile in a finite amount of time χ : Aavail,exec ×
RPro frequ 7−→ Arequ,exec. If such an improvement is not possible then the

planned task cannot be realized with the available executing actors.

Interface-Requirements and Interface-Design

If the available executing actors have an available profile which is in suf-

ficient agreement with the required profile then one has to analyze the

interaction between the executing and the assistive actor in more detail.

Logically the assistive actor shall assist the executing actor in realizing

the required task as good as possible.

From this follows that the executing actor has to be able to perceive all

necessary properties in a given situation, has to process these perceptions,

and has to react appropriately.

If one calls the sum of all possible perceptions and reactions the interface

of the executing actor Int fA,exec and similarly the sum of all possible

perceptions and reactions of the assistive actor the interface of the assistive

actor Int fA,assis,then the interface of the assistive actor should be optimized

with regard to the executing actor.

To be able to know more clearly how the interface of the assistive actor

Int fassis should look like that the executive actor can optimally perceive and

react to the assistive interface one has to have sufficient knowledge about

how the executive actor internally processes its perceptions and computes

its reactions. This knowledge is not provided by the actor story but calls for

an additional model called actor model.

Actor Model and Actor Story

While one can describe in an actor story (AS) possible changes seen

from a 3rd-person view one can not describe why such changes happen.

26 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

To overcome these limits one has to construct additional models which

describe the internal states of an actor which can explain why a certain

behavior occurs.

Figure 3.2: Change event with an embed-
ded actor

The general idea of this interaction between actor story and actor model

can be seen in figure 3.2.

1. In a simple actor story with only two states v, v′ we have an actor called

’USER(U1)’ which has ’visual perception’ and which can act with ’motor

activities’.

2. Therefore the actor can ’see’ properties like ’SCREEN’, ’BUTTON’,

and ’NOT-PRESSED’. Based on its ’behavior function’ Φ the actor can

compute a possible output as a motor-action, described as an event

expression 〈v, v′, press(BUTTON(B1)), d(not− pressed(B1)), C :
(pressed(B1))〉.

3. This results in a change leading to v′. The actor U1 is left out in v′, also

it is still part of v′.

4

Actor Model (AM)

Seen from the actor story the processing of the task requires that an actor

can sense all necessary aspects of the task processing as well as he can

respond as needed. Besides this one expects that the actor is able to

process the input information (I) in a way that the actor is able to generate

the right Output (O). One can break down the required behavior to a series

of necessary inputs I for the actor followed by necessary responses O of the

actor . This results in a series of input-output pairs pairs {(i, o), · · · , (i, o)}
defining implicitly a required empirical behavior function:

φe = {(i, o), · · · , (i, o)} (4.1)

Because any such empirical behavior function is finite and based on

single, individual events, it is difficult to use this empirical finite function

as the function of an explicit model. What one needs is an explicit general

theoretical behavior function like:

φ : I 7−→ O (4.2)

Although an empirical behavior function φe is not a full behavior function,

one can use such an empirical function as a heuristic guide to construct a

more general theoretical function as part of a complete hypothetical model

of the actor.

It is an interesting task, to elaborate a hypothetical model of the internal

processes of an actor which defines thetheoretical behavior function φ. To

do this broadly with all details is beyond the scope of this text. Instead we

will work out a first basic model which can be understood as a kind of a

template for theoretical behavior functions, which can be extended further in

the future.

The task of modeling a possible actor is twofold: first (i) one has to

define a complete formal model of a possible structure and it’s dynamic,

second (ii) it must be possible to predict the behavior of the model in a way

that it is possible to observe and measure this behavior. If the observable

behavior of the model is including the empirical behavior function φe, then

the hypothetical model is empirical sound in a weak sense.

φe ⊆ φ (4.3)

28 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

We understand here a model as a mere collection of rules, while an

algebraic structure is an extension of a model by including additional sets as

well as axioms. But we use the term ’model’ here equivalently to the term

’algebraic structure’.

Actor as Input-Output System

To enable a transparent interaction between actor and environment it will be

assumed that an actor is generally an input-output system (IOSYS) , that

means that an actor has (i) inputs (I) from the environment (here the actor

story), which are translated by some kind of a ’sensoric system’ generating

inputs (I) for the receiving actor as well as (ii) outputs (O) from the actor

which can cause changes in the environment. The sum of all inputs I and

outputs O defines the basic interface (BIntf) of an input-output system S in

an environment E.

To define this more explicitly we will define the following terms: Environ-

ment (E), Input-Output system (IOSYS) as well as Actor (A). As Interface

between the actor and the environment we have also the Basic Interface

(BIntf).

The actors (ACT) are understood as input-output systems (IOSYS).

It is difficult to describe formally the interaction between an environment

(E) and an actor (A). The environment offers existing properties which

can change from time to time. The possible ’effect’ of these properties

and their changes depend on the built-in sensor functions of the actor.

Thus the stimulus-function σ of the environment can map some subset

of properties of the environment onto some actor, but which effect these

mapped properties will have as internal input (I) in the actor depends

from the actor-specific sensor functions σA. Thus we have a chain σE :
2Π 7−→ ACT and then σA : rn(σE) 7−→ IA. The same is true for the

backward chain from the outputs of an actor to the environment: An actor

A has generated internally some outputs OA which are first translated by

its motor function µA into some external properties of the actor A, which

in turn are then translated by the response function of the environment µ

into some effects represented as deletion of existing properties 2Π− as

well as of creation of new properties 2Π+: µA : OA 7−→ OA,resp and then

µ : rn(µA) 7−→ 2Π− ∪ 2Π+.

Thus we get a hierarchical embedding of structures:

ENV(E) := Environment E (4.4)

ENV(E) i f f E = 〈Π, ACT, σ, µ〉
Π := Set o f properties

ACT := Set o f actors

ACT ⊆ 2Π

σ : 2Π 7−→ ACT(stimulus f unction)

µ : OACT,resp 7−→ 2Π(response f unction)

and:

ACTOR MODEL (AM) 29

ACT(A) := Actor A (4.5)

ACT(A) i f f A ∈ ACT ∧ A = 〈I, O, IS, σ, µ〉
IA := Input

OA := Output

σA : rn(σE) 7−→ IA

µA : OA 7−→ OA,resp

and:

IOSYS(S) := Input−Output System (4.6)

IOSYS(S) i f f S = 〈I, O, IS, φ〉
I := Input

O := Output

IS := Internal States(can be empty)

φ : I × 2Π × 2Π ×O

An input-output system (IOSYS) can be defined independent from sensor

and motor functions but then the actor is ’disconnected’ from every kind of

environment. Thus we use the term ’input-output system’ if we talk about

actors in a more abstract way and we use the term ’actor’ for actors if we

talk about actors as input-output systems somehow embedded in some

environment.1 1 Here is the environment defined by the
actor story.With these clarifications it becomes clear that the the basic interface

(BIntf) of an actor A in the environment E has not to be defined with the

’internal’ inputs and outputs of an actor but by the image/ range of the

environment-stimulus function rn(σE) as well as the response-values of the

actor OA,resp. Thus we have:

BInt fA,E = {x|x ∈ rn(σE)×OA,resp}

This definition shows not only (as stated above) that the basic interface

is a finite set of input-output pairs, but additionally the observed inputs are

mere estimates of inputs because the observed stimuli from point of view

of the environment are not necessarily the inputs inside of the actor. The

stimulus function of the actor in connection with the internal states usually

does modify the outside-stimuli in specific ways.

Real Interface (RIntf) The basic interface (BInf) as logical concept has to

be distinguished from that interface which represents a ’real’ device interact-

ing with an executive actor. The real interface (RIntf) of an assistive actor

’realizes’ the ’basic interface’ by providing some sensoric appearance of an

assistive actor. Thus if the executive actor needs an input from the interface

there can be visual or acoustic or haptic or other sensoric properties which

are used to convey the input to the executive actor. As well, if the executive

actor wants to produce an output to change some properties in the assistive

30 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

actor there must be some sensor at the side of the assistive actor which can

receive some ’action’ from the executive actor. The concrete outlook of such

a real interface is the task of the ’interface design’ given a ’basic interface’.

Input-Output Systems Basic Typology

Figure 4.1: Basic Typology of Input-Output
Systems

With the basic parameters Input (I), Output (O) as well as Internal States

(IS) one can derive some basic typology of input-output systems(cf. figure

4.1).

A first case is the random case where the output of a system will be

completely random within the space of possible outputs independent of the

input. Thus with regard to the set of random possible system-dependent

outputs ORandom,SYS every output can occur.

ACTOR MODEL (AM) 31

A second case is the fixed (deterministic) case where a subset of the

system-dependent outputs OFixed,SYS is in a static manner associated

with a certain input. This determination of a certain subset of the system-

dependent outputs represents some sort of a bias; not the whole set is

possible, but only a pre-defined subset.

The final case describes an incrementally fixed case where the system

can change its behavior during runtime OSel,SYS depending on some

kinds of rewards which can be part either of the external input I or of some

internal states ISREW . Although the set of system-dependent outputs can

change, the set of possible outputs represents a certain subset of all the

possible outputs and therefore is nevertheless by this selection a bias which

is influenced by the rewards.

If one steps back even more and takes a look to the three types ORandom,SYS, OFixed,SYS, OSel,SYS

then one can compare these special sets with the general set of system-

dependent outputs OSYS and the set of possible outputs offered by the

actor story as the world (W) given as OW . If one takes the possible outputs

of the world called OW as point of reference then the system dependent

outputs ORandom,SYS, OFixed,SYS, OSel,SYS, OSYS are usually true subsets

of the possible world outputs and there can be intriguing overlaps between

ORandom,SYS, OFixed,SYS, OSel,SYS. There can be cases that the learning

system with its output set OSel,SYS is weaker then the system with a fixed

output set OFixed,SYS and this in turn can be weaker than a random sys-

tem with the random output set ORandom,SYS. Whether this is the case or

not depends from many parameters and has empirically to be checked by

appropriate tests.

Learning Input-Output Systems From this it follows that the ’basic interface

(BIntf)’ is usually only a subset of the behavior function of a learning system.

This means for to ’understand a learning input-output system’ it is not

sufficient to describe the behavior of a system only once; instead one has

to describe the behavior in different phases to detect ’possible changes’

compared to the ’past’. This corresponds to the fact, that a learning system

’learns always’. Thus to ’predict’ the behavior of learning systems in an

environment is in no case trivial.

Another point is related to the possible reward parts of the external

inputs and/ or the internal states of an actor. Because learning depends

radically on these ’rewards’ to receive some ’bias’ to be able to ’select ’

an appropriate subset of possible behavior within a world one has to

study these rewards within the logic and dynamics of the actor. The main

question is under which conditions a system can approach the optimal

output-space using rewards. This assumes that it is possible to determine

the optimal space somehow, at least by the ’rewards’. In the physical world

with biological systems the available rewards are results of some past

environments. This does not guarantee success in the future. Therefore the

main problem is to find new rewards which are more appropriate to enable

success in future environments which are usually not completely known

during the time of decision making.

32 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

Empirically and Non-Empirically Motivated

The general definition of a learning input-output offers space for nearly

infinite many concrete instances. One possible classification scheme could

be that of empirically motivated or non-empirically motivated models.

Empirically Motivated

Examples of empirically motivated models are some of the models which

experimental psychologists have tried to develop. One famous team of

psychological motivated researchers was the team Card, Moran and Newell

working at the Paolo Alto Research Center (PARC) starting in 1974. They

published a book ’The Psychology of Human-Computer Interaction’ where

they showed how one can develop empirical models of human actors.

According to Card et al.(1983)2 one can assume at least three sub-functions 2 Stuart K. Card, Thomas P. Moran, and
Allen Newell. The Psychology of Human-
Computer Interaction. Lawrence Erlbaum
Associates, Inc., Mahwah (NJ), 1 edition,
1983

within the general behavior function:

φ = φperc ⊗ φcogn ⊗ φmot (4.7)

φperc := Perception (4.8)

φperc : I 7−→ (VB ∪ AB) (4.9)

VB := Visual bu f f er (4.10)

AB := Auditory bu f f er (4.11)

φcogn1 : (VB ∪ AB)×MSTM −→ MSTM (4.12)

φcogn2 : MSTM ×MLTM −→ MSTM ×MLTM (4.13)

φcogn1+2 := Cognition (4.14)

φmot : MLTM −→ O (4.15)

φmot := Motor activity (4.16)

Thus an input – visual or auditory – will be processed by the perception

function φperc into an appropriate sensory buffer VB oder AB. The con-

tents of the sensory buffers will then be processed by the partial cognitive

function cogn1 into the short term memory (STM), which at the same time

can give some input for this processing. Another cognitive function cogn2

can map the contents of the short term memory into the long term memory

(LTM) thereby using information of the long term memory as input too. From

the long term memory the motor function can receive information to process

some output O.

According to these assumptions we have to assume the following parti-

tions of the internal states:

VB ∪ AB ∪MSTM ∪MLTM ⊆ IS (4.17)

The complete model can be found in the cited book.

Non-Empirically Motivated

In many cases non-empirically motivated models are sufficient. This

amounts to the task to ’invent’ a function φ which maps the inputs from

ACTOR MODEL (AM) 33

the known actor story into the outputs of the known actor story. This can be

done deterministically or non-deterministically, i.e. in a learning fashion.

In the deterministic case one can take the empirical behavior function

(see definition 4.1) derived from the actor story ’as it is’.

In the non-deterministic case it is not enough to ’re-write’ the empirical

behavior function as the theoretical behavior function of the actor model. To

adapt to the documented changes in the behavior of the actor one has to

assume ’appropriate’ internal states whose internal changes correspond to

the observable changes in the actor story.

GOMS Model

One old and popular strategy for non-empirically motivated models is

labeled GOMS for Goals, Methods, Operators and Selection rules3. 3 A first extensive usage of a GOMS model
can be found in Card et al. (1983) :139ff

Stuart K. Card, Thomas P. Moran, and
Allen Newell. The Psychology of Human-
Computer Interaction. Lawrence Erlbaum
Associates, Inc., Mahwah (NJ), 1 edition,
1983

• GOAL: A goal is something to be achieved and will be represented by

some language expression.

• OPERATOR: An operator is some concrete action which can be done.

• METHOD: A method is a composition of a goal and some operators

following the goal to realize it.

• SELECTION RULE: A selection rule has an IF-THEN-ELSE structure:

IF a certain condition is fulfilled, THEN some method will be selected,

otherwise the method following the ELSE marker will be selected.

According to the general learning function ?? a rule of a GOMS model

has the logical format:

IF I = X ∧ IS = Y THEN IS = Y′ ∧O = Z (4.18)

Example: An Electronically Locked Door For the following demonstration

we use the simple example of an electronically locked door.4 4 For a description of the example see:
http://www.doeben-henisch.de/fh/

fsv/node13.html in Doeben-Henisch
(2010) .

Gerd Doeben-Henisch. Formal Specifi-
cation and Verification: Short Introduction.
Gerd Doeben-Henisch, 2010

For this actor model in the GOMS format we assume the following formal

actor story:

AS for Electronic Door Example If we start with state Q1, then it will be

followed by state Q2 if the output of the executive actor is pushing the key

with symbol A; otherwise, if the output is different, then we will will keep

state Q1. Similar in the following states: If we are in state Q2 and the output

of the user is pushing the key with symbol B, then the user story switches

to state Q3; otherwise we are back in state Q1. Finally, if we are in state Q2

and the user pushes the key with symbol A, then we will reach the final state

Q4, otherwise back again to state Q1.

The details of the different states are given here.

1. Start = U1 ∪ S1 ∪ Env1

U1 = {USER(U1)}

S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),

KEY(Kb),KEY(Kc),PART-OF(〈Ka, Kb, Kc〉, K1)}

http://www.doeben-henisch.de/fh/fsv/node13.html
http://www.doeben-henisch.de/fh/fsv/node13.html

34 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

Env1 = {DOOR(D1), CLOSED(D1)}

Meaning: ’U1’ is the name of a user, ’S1’ the name of a system-interface,

and ’Env1’ is the name of an environment. All three ’U1, S1, C1’ are

names for subsets of properties of state Start.

2. CHANGE-AS:〈 Start,Start,push(not(Ka),K1),d(),c()〉, 〈 Start,Q2,push(Ka,K1),

d(), c(PRESSED(Ka))〉,

3. Q2 = U1 ∪ S1 ∪ Env1

U1 = {USER(U1)}

S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),

KEY(Kb),KEY(Kc),PART-OF(〈Ka, Kb, Kc〉, K1),PRESSED(Ka)}

Env1 = {DOOR(D1), CLOSED(D1)}

4. CHANGE-AS: 〈Q2, Start, push(not(Kb), K1), d(), c()〉, 〈 Q2,Q3,push(Kb,K1),

d(), c(PRESSED(Kb))〉,

5. Q3 = U1 ∪ S1 ∪ Env1

U1 = {USER(U1)}

S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),

KEY(Kb),KEY(Kc),PART-OF(〈Ka, Kb, Kc〉, K1),PRESSED(Kb)}

Env1 = {DOOR(D1), CLOSED(D1)}

6. CHANGE-AS: 〈Q3, Start, push(not(Ka), K1), d(), c()〉, 〈 Q3,Goal,push(Ka,K1),

d(CLOSED(D1)), c(PRESSED(Ka), OPEN(D1))〉

7. Goal = U1 ∪ S1 ∪ Env1

U1 = {USER(U1)}

S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),

KEY(Kb),KEY(Kc),PART-OF(〈Ka, Kb, Kc〉, K1),PRESSED(Ka)}

Env1 = {DOOR(D1), OPEN(D1)}

For a complete representation as a graph different variants have been re-

alized to enable a better judgment about the Pros and Cons of the different

versions.

The graphs are constructed with the DOT-Language using a nor-

mal editor under Linux and the KGraphViewer program based on the

graphviz package of software tools developed since 1991 by a team at the

ATT&Laboratories. For the theory see e.g. Gansner et.al (1993) 5, and

5 Emden R. Gansner, Eleftherios Koutsofios,
Stephen C. North, and Gem-Phong Vo.
A technique for drawing directed graphs.
IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 19(3):214–230, 1993

Gansner et.al. (2004) 6. For a tutorial see Gansner et.al (2015) 7.

6 Emden R. Gansner, Yehuda Koren, and
Stephen North. Graph drawing by stress
majorization. In János Pach, editor, Graph
Drawing, number 3383 in Lecture Notes in
Computer Science, pages 239 – 250, Berlin
- Heidelberg. Springer-Verlag

7 Emden R. Gansner, Eleftherios Koutsofios,
and Stephen C. North. Drawing graphs
with dot. pages 1–40, 2015. Online:
http://www.graphviz.org/pdf/dotguide.pdf

For practical reasons it seems that the last version, figure 4.6, should be

preferred: it gives implicitly all necessary informations and keeps the amount

of written information low.

GOMS Actor Model

As one can see the formal description of the actor story offers no information

about the internal structures which determine the behavior of the different

users, the executive actor as well as the assistive actor. To enhance this one

has to define additional actor models.

We will start the construction of a GOMS model for the executive actor

using the electronically locked door. For this we simplify the GOMS-Model

ACTOR MODEL (AM) 35

Figure 4.2: Electronic door example - bare
graph, only nodes

Figure 4.3: aai-example electronic door:
nodes and minimally labeled edges

Figure 4.4: aai example electronic door with
nodes, shortened edge-labels, and subsets
of properties

Figure 4.5: aai example with a complete
graph (only the edge labels are shortened)

36 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

Figure 4.6: Graph with complete start state
followed by difference states based on
labelled edges

7 Instead of using the GOMS format for an
actor model one can use every kind of a
function, e.g. a function φ realized with a
normal programming language like ’C/C++’,
’Java’, ’python’ etc.

format as follows: IF Input ... Internal ... THEN ... Internal ... Out... ELSE

... Internal ... Out.... The Input can either be some value from the set I of

possible inputs or from the set IS of the internal states of the system. In

the used example are all properties of the states a possible input or the

properties of the internal states. All these IF-THEN rules are subsumed

under the goal to enter the open door.

1. GOMS MODEL FOR USER U1

2. INPUT U1 = VB; OUTPUT U1 = MOT

3. GOAL : OPEN(D1) & DOOR(D1)

(a) IF VB=’CLOSED(D1)’ & IS=’MEM(U1,(Ka,0,Kb,0,Ka,0))’ THEN

IS=’MEM(U1,(Ka,1,Kb,0,Ka,0))’ & MOT=’push(Ka,K1)’

(b) IF VB=’CLOSED(D1)’ & IS=’MEM(U1,(Ka,1,Kb,0,Ka,0))’ THEN

IS=’MEM(U1,(Ka,1,Kb,1,Ka,0))’ & MOT=’push(Kb,K1)’

(c) IF VB=’CLOSED(D1)’ & IS=’MEM(U1,(Ka,1,Kb,1,Ka,0))’ THEN

IS=’MEM(U1,(Ka,1,Kb,1,Ka,1))’ & MOT=’push(Ka,K1)’

(d) IF VB=’OPEN(D1)’ & IS=’MEM(U1,(Ka,1,Kb,1,Ka,1))’ THEN

IS=’MEM(U1,(Ka,0,Kb,0,Ka,0))’ & MOT=’movesthrough(U1,D1)’

These IF-THEN-Rules follow the general behavior function φ : I ×
2IS 7−→ 2IS ×O

The system interface S1 has its own GOMS-Model.

1. GOMS MODEL FOR SYSTEM-INTERFACE S1

2. INPUT S1 = K1; OUTPUT S1 = states of the door {CLOSED, OPEN}

3. GOAL : OPEN(D1) & DOOR(D1)

(a) IF K1 =’KEY-PRESSED(K1,Ka)’ & IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’

THEN IS=’CODE(C2,(Ka,1,Kb,0,Ka,0))’

(b) IF K1 =’KEY-PRESSED(K1,not(Ka))’ & IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’

THEN IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’

(c) IF K1 =’KEY-PRESSED(K1,Kb)’ & IS=’CODE(C2,(Ka,1,Kb,0,Ka,0))’

THEN IS=’CODE(C2,(Ka,1,Kb,1,Ka,0))’

ACTOR MODEL (AM) 37

(d) IF K1 =’KEY-PRESSED(K1,not(Kb))’ & IS=’CODE(C2,(Ka,1,Kb,0,Ka,0))’

THEN IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’

(e) IF K1 =’KEY-PRESSED(K1,Ka)’ & IS=’CODE(C2,(Ka,1,Kb,1,Ka,0))’

THEN IS=’CODE(C2,(Ka,1,Kb,1,Ka,1))’ & OUT=’OPEN(D1)’

(f) IF K1 =’KEY-PRESSED(K1,not(Ka))’ & IS=’CODE(C2,(Ka,1,Kb,1,Ka,0))’

THEN IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’

Thus a complete Process is an interaction between the actor story (AS)

and the actor models written as GOMS-Models.

Measuring Dynamic Behavior

If one assumes a ’learning actor ’ then the actor story describes the ’ex-

pected behavior ’ as a set of ’input-output pairs’ for every state and an actor

has to be ’trained to learn’ the ’expected sets of input-output pairs’.

One can use therefor the defining sequence of input-output tasks to

’measure’ the ’intelligence’ of an actor. Running a task the first time one can

use the percentage of correctly solved sub-tasks within a certain amount

of time as a ’benchmark’ indicating some measure of ’intelligence’. (For an

introduction into the topic of psychological intelligence measures see e.g.

Eysenk (2004) 8, Rost (2009) 9, Rost (2013) 10)

8 Hans J. Eysenk. Die IQ-Bibel. Intelligenz
verstehen und messen. J.G.Cotta’sche
Buchhandlung Nachfolger GmbH, Stuttgart,
1 edition, 2004. Englische Originalausgabe
1998: Intelligence. A New Look

9 Detlef H. Rost. Intelligenz. Fakten und
Mythen. Beltz Verlag, Weinheim - Basel, 1
edition, 2009

10 Detlef H. Rost. Handbuch Intelligenz.
Beltz Verlag, Weinheim - Basel, 1 edition,
2013

To measure the ’learning capacity ’ of an actor one can use a task to

explore (i) how much time an actor needs to find a goal state and (ii) how

many repetitions the actor will need until the error rate has reached some

defined minimum.(The history of behavioral Psychology provides many ex-

amples for such experiments, see e.g. Hilgard et.al. (1979) 11 and a famous

11 Ernest R. Hilgard, Rital L. Atkinson,
and Richard C. Atkinson. Introduction to
Psychology. Harcourt Brace Jovanovich,
Inc., New York - San Diego - Chicago -
et.al., 7 edition, 1979

experiment with Tolman (1948)12 using learning curves and error rates).

12 Edward C. Tolman. Cognitive maps
in rats and men. The Psychological
Review, 55(4):189–208, 1948. 34th Annual
Faculty Research Lecture, delivered at the
University of California, Berkeley, March 17,
1947. Presented also on March 26, 1947
as one in a series of lectures in Dynamic
Psychology sponsored by the division of
psychology of Western Reserve University,
Cleveland, Ohio

Another measure could be the quality of the storage capacity (memory) by

first identifying a maximum of correctness and then (iii) one measures the

duration until which the maximum correctness of the memory has again

weakened below a certain threshold of accuracy.(The first scientist who did

this in a pioneering work was the German Psychologist Ebbinghaus (1848)
13, English translation 14) 13 Hermann Ebbinghaus. Űber das

Geda̋chtnis: Untersuchungen zur
experimentellen Psychologie. Duncker &
Humblot, Leipzig, 1 edition, 1885. URL:
http://psychclassics.yorku.ca/Tolman/Maps/maps.htm
14 Hermann Ebbinghaus. Memory: A
Contribution to Experimental Psychology.
Teachers College, Columbia University,
New York, 1 edition, 1913. Translated
from the German Edition 1885 by Henry A.
Ruger & Clara E. Bussenius 1913, URL:
http://psychclassics.yorku.ca/Ebbinghaus/index.htm

While some minimal amount of ’learning time’ is needed by all kinds of

systems – biological as well as non-biological ones – only the non-biological

systems can increase the time span for ’not-forgetting’ much, much wider

than biological systems are able to do.

Today the biggest amount of executing actors are still biological systems

represented by human persons (classified as ’homo sapiens’), therefore

parameters as ’learning time’, ’memory correctness’, or ’memory forgetting

time’ are important to characterize the ’difficulty’ of a task and ways to

explore possible settings which make the task difficult. From such a ’learning

analysis’ one can eventually derive some ideas for possible ’improvements’.

From this follows that the format of usability tests should be adapted to

these newly identified behavior based properties.

On account of the unobservability of the inner states (IS) of every real

system it follows that all assumptions about possible inner states as well

as about the details of the behavior function φ represent nothing else as a

38 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

hypothesis which is given in the format of a formal model. The formal space

for such hypothetical models is infinite.

5

Simulation

Figure 5.1: Creation of the symbolic space
by AAI-experts including an actor story
(AS), actor models (AMs), automata based
on the actor story as well as on the actor
models, and simulators running simulations
with the automata.

GENERAL OUTLINE : Figure 9.2 outlines the symbolic space which is

basically constituted by an actor story in mathematical mode (ASε) and –

optionally – by several actor models primarily also in mathematical mode

(AMε). In both cases one can compile these representations into equiv-

alent algorithmic representations which represent automata Mα. These

automata are still part of the symbolic space. If one feeds these algorith-

mic versions into an appropriate physical computer, then one has a full

functioning simulation model Mσ.

While the simulation model of the actor story Mσ,AS written as MΣ

serves as the overall framework of the simulation – comparable to the

world of a computer game – are the different simulation models of the actor

models Mσ,AMi written as Mσi individual actors operating in the framework

of the actor story.

ALGORITHMIC CONVERSION : A given extended graph γ+ can be mapped

into an automaton Mα,AM by a direct mapping. As starting point we take an

extended ordered graph (EOG) as follows:1 1 For a good introduction to formal lan-
guages and automata see e.g. Hopcroft
and Ullman (1979)

H.L. Hopcroft and J.D. Ullman. Introduction
to Automata Theory, Languages, and Com-
putation. Addison-Wesley Publ.Company,
Reading (MA), 1 edition, 1979

EOG(x) i f f x = 〈V, I, F, Π, χ, E, λ, χ〉 (5.1)

V := f inite set o f vertices

40 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

I ⊆ V; set o f initial vertices

F ⊆ V; set o f f inal vertices

Π := f inite set o f property expressions

χ := f inite set o f action expressions

E ⊆ V ×V; set o f edges

λ : V 7−→ 2Π

χ : E 7−→ χ

(5.2)

The usual definition of a finite automaton is as follows:

FA(x) i f f x = 〈Q, I, F, Σ, ∆〉 (5.3)

Q := f inite set o f states

I ⊆ Q; set o f initial states

F ⊆ F; set o f f inal states

Σ∗ := input words

∆ ⊆ Q× Σ∗ ×Q; set o f transitions

If one replaces/ substitutes the vertices by states, the edges with action

expressions by a transition with an input word then one gets an automaton.

Finally, if one extends the structure of the automaton by the set of property-

expressions Π as follows: 〈Q, I, F, Σ, Π, ∆〉 and with λ : Q −→ 2Π,

then one has an automaton with finite sets of properties attached to each

state. We call a finite automaton with such a property extension a property-

extended finite automaton (PFA).

S IMULATION OF ACTOR STORY: With this definition one has an extended

automaton α+ ∈ {x|PFA(x)} as an automaton who being in state v
recognizes an action expression ε ∈ χ and generates as follow-up state

that state v′, which is constructed out of state v by the encoded deletions

and/ or creations of properties given as property-expressions from Π. All

state-transitions of the automaton α+ from a start-state to a goal-state

together are called a run ρ of the automaton. The set of all possible runs of

the automaton is called the execution graph γexec of the automaton α+ or

γexec(α+).

Thus the simulation of an actor story corresponds to a certain run ρ of

that automaton α+ which can be generated out of a mathematical actor

story by simple replacement of the variables in the graph γ+.

S IMULATION OF ACTOR STORY WITH ACTOR MODELS : Until now only

that case has been described, where the actor story has been simulated

without the actor models. A difference between the actor story and the actor

models is given by the fact that the actor models are ’from the beginning’

formal structures describing an algorithm. Thus it is only a question of

convention to use a language LAM which fits to an intended automaton.

Additionally one needs some assisting algorithm to map the different actor

model algorithms/ automata with the automaton of the actor story. Done in

SIMULATION 41

the right way this ends up in a complete ’automatic conversion process’ from

actor story and actor models to a final simulation.

6

Algorithmic Verification

Another helpful process is the process named ν. It translates a behavior

model MSR with the aid of a temporal logic language LTL and an appropri-

ate algorithm α into a algorithmic verification model Mν, which can compute

the occurrence or non-occurrence of a certain property in the space of possi-

ble states of the behavior model. This capability of deciding the occurrence

or non-occurrence of certain properties is especially helpful in the case of

non-functional requirements.

The ’non-functional requirements (NFR)’ have to be defined in their

intended meaning before the actor story and then it must be shown, how

the structure of the actor story ’satisfies’ these criteria. In this sense are

the ’non-functional requirements’ presented as ’constraints’ which have the

status of ’meta-predicates’, which have to be designed in an appropriate

’control logic’ for actor stories. This topic of ’Non-Functional Requirements

(NFRs)’ as well as ’Functional Requirements (FRs)’ and their relationship

is a hot topic in systems engineering and did not have a complete solution

until now. The general problem is how to ’represent’ the NFRs in a way, that

these can be handled in the overall system. We hove to demonstrate here

one new approach to overcome the known problems.

The following selected papers (only a subset of thematic related papers)

can illustrate the discussion until now. 1.

1 F. Khalique, W. H. Butt, and S. A. Khan.
Creating domain non-functional require-
ments software product line engineering
using model transformations. In 2017
International Conference on Frontiers of
Information Technology (FIT), pages 41–45,
Dec 2017. DOI : 10.1109/FIT.2017.00015;
F. Fellir, K. Nafil, and R. Touahni. Ana-
lyzing the non-functional requirements
to improve accuracy of software effort
estimation through case based reasoning.
In 2015 10th International Conference
on Intelligent Systems: Theories and Ap-
plications (SITA), pages 1–6, Oct 2015.
DOI : 10.1109/SITA.2015.7358402; D. Ma-
iriza, D. Zowghi, and V. Gervasi. Conflict
characterization and analysis of non
functional requirements: An experimental
approach. In 2013 IEEE 12th Interna-
tional Conference on Intelligent Software
Methodologies, Tools and Techniques
(SoMeT), pages 83–91, Sept 2013. DOI :
10.1109/SoMeT.2013.6645645; A. Suhr,
C. Rosinger, and H. Honecker. System de-
sign and architecture ?? essential functional
requirements vs. ict security in the energy
domain. In International ETG-Congress
2013; Symposium 1: Security in Critical
Infrastructures Today, pages 1–9, Nov
2013; B. Yin, Z. Jin, W. Zhang, H. Zhao,
and B. Wei. Finding optimal solution for
satisficing non-functional requirements via
0-1 programming. In 2013 IEEE 37th An-
nual Computer Software and Applications
Conference, pages 415–424, July 2013.
DOI : 10.1109/COMPSAC.2013.69; X. L.
Zhang, C. H. Chi, C. Ding, and R. K. Wong.
Non-functional requirement analysis and
recommendation for software services. In
2013 IEEE 20th International Conference
on Web Services, pages 555–562, June
2013. DOI : 10.1109/ICWS.2013.80; ;
Y. Liu, Z. Ma, R. Qiu, H. Chen, and W. Shao.
An approach to integrating non-functional
requirements into uml design models
based on nfr-specific patterns. In 2012
12th International Conference on Quality
Software, pages 132–135, Aug 2012. DOI :
10.1109/QSIC.2012.23; and M. Kassab,
O. Ormandjieva, and M. Daneva. An
ontology based approach to non-functional
requirements conceptualization. In
2009 Fourth International Conference on
Software Engineering Advances, pages
299–308, Sept 2009. DOI : 10.1109/IC-
SEA.2009.50

7

Physical Design

This chapter describes how one can translate the logical specifications of

the actor story and the actor models into a physical object with a physical

appearance functioning as a possible physical interface assisting a possible

physical executive actor as an intended user.

8

Usability Testing

As the preceding chapter about physical design shows, the translation of

parts of the logical (symbolical) space into the physical space induces a real

amount of fuzziness on both sides, the assistive as well as the executive

actor. Therefor one has to realize a series of tests to check the quality of the

observable real processes compared to the logical requirement of the actor

story.

Usability Measurement Procedure To approach a possible optimum for

a finite set of demonstrators one applies a set of usability measurements

– called ’usability test’ – in an iterative process. In a usability test UT so

far one realizes a mapping of given demonstrators D into a set of usability

values V as follows υUT : D 7−→ D×V. A usability test includes a finite set

of objective as well as subjective sub-tests. The values V of one usability

test are then given as a finite set of points in an n-dimensional space Vn.

Thus after a usability test υUT has been applied to a demonstrator one has

an ordered pair (D, V).

To find the relative best demonstrator in a finite set of candidate demon-

strators {(D1, V1), (D2, V2), ..., (Dm, Vm)} one has to define a measure

µ : 2Vn 7−→ Vn for the assumed finite many n-dimensional values

{Vn
1 , Vn

2 , ..., Vn
m} to compare these values and identify for this set an optimal

value. Thus µ(Vn
1 , Vn

2 , ..., Vn
m) computes a certain Vn

i ∈ {Vn
1 , Vn

2 , ..., Vn
m}.

Applying this measure to the set {(D1, V1), (D2, V2), ..., (Dm, Vm)} gives

the best demonstrator of this set.

Not yet Ideally This is the procedure which is described in most textbooks,

but this procedure has a weak point: in these tests one characterizes the

test persons as the intended executive actors only roughly, e.g. ’experienced

user’ or ’normal user’ or ’beginner’, perhaps additionally one takes into

account the ’age’ and ’gender’. But as one can infer from the preceding

chapters every task has its very specific ’profile of requirements’ condensed

in the TAR document and what is needed on the executive side is an explicit

’user profile’ as required with the AAR document. As everybody can easily

check a usability test will differ a lot if there are test persons with greatly

varying AAR profiles which have different ’distances’ to the TAR profile. In

the extreme case there is a physical assistive device which works fine for

test persons with an AAR profile ’close to the TAR profile’, but because there

haven been test persons with an AAR profile which was ’not close to a TAR

48 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

profile’ the results are very bad.

Proposal of an Ideal Procedure Following the preceding chapters one

can infer the following proposal for an ideal test procedure to measure the

usability of a physical assistive actor device used by real human persons

mimicking the ideal executive actor.

1. Receiving an actor story AS and the TAR document from that story.

2. Selecting a group of test candidates {T1, ..., Tn} planned to mimicking

the intended executive actor.

3. Work out an AAR document for each of the test candidates yielding a set

of pairs {(T1, AAR1), ..., Tn, AARn)}.

4. Compute the distance of each AARi compared to the TAR and group

the test candidates according to their classified actor induced actor

requirements AAR into distinct AAR-classes.

5. Run a series of tests and and observe and compute the following for

each test:

(a) Taking notes of the objective behavior data.

(b) Compare the observed behavior with the expected behavior based

on the AS.

(c) Compute the error rate for each test candidate in each test.

(d) After one test give the test candidate a questionnaire asking for the

general feeling doing the test (-n - 0 - +n) and asking for objective

circumstances connected to this feeling.

6. After the completion of the defined series of tests one has to compute

the learning curve for each test person and the curve of satisfaction

based on the questionnaires.

7. One continues with another series of tests distributed in time to compute

the forgetting curve for each test person not by doing the test but by

asking to remember the different action sequences and the test persons

are writing down there memories.

With this procedure one can differentiate the different types of test

persons more precisely, one will get objective behavior data as well as sub-

jective judgments related to objective properties, and one will get a picture

of the dynamic learning behavior of each test person. With these data one

can dig ’deeper’ into the psycho-dynamic of the interaction between human

executive actors and physical assistive actors.

If these tests show clear weaknesses within the process of interaction

one can try to identify the ’causes’ for this weaknesses: either (i) physical

properties of the assistive actor or (ii) deficiencies on the side of the execu-

tive actors (objectified by the AAR document) or (iii) a bad logic in the actor

story.

If the causes seem ’reasonable’ and their change could improve the

overall error rates and the satisfactions in a way which supports the main

USABIL ITY TESTING 49

goal (e.g. earn money with the device, (ii) improve the quality of a service,

(iii) improve some theory, ...), then one can decide to improve the actor story

or the actor models or the physical device or do a better training for the

executing actors.

9

AS-AM Philosophy

As explained in the introduction the ’Philosophy of the AAI-Expert’ is cen-

tering around the findings of modern Biology and Psychology. Its aim is to

explain why a human expert is able to use a formal language, here the set

theoretical language Lε, to talk about his experiences of the empirical world.

What Biology and Psychology are telling us is that the communication of the

experts is grounded in their cognitive machinery embedded in their brains.

Because the human brain in the body is not directly interacting with the

outside world but mediated by sensors and actuators the brain constructs

an inner model of the outside world. And it are exactly the properties of this

’inner model’ which provide a ’point of reference’ for all our thinking and

talking. For more details see chapter 9 ’AS and AM Philosophy’.

One conclusion from these considerations is that the reality for a human

person is basically given as a stream of neural events, partially translated

into phenomena of the consciousness, which can be divided in distinguish-

able situations, called states. A state is understood as a set of properties

embedded in a three-dimensional space. If at least one property changes a

state changes. Subsets of properties can be understood as objects, which

in turn can be subdivided into ’actors’ and ’non-actors’. Actors can ’sense’

their environment and they can ’respond’. More distinctions are possible as

needed.

This, to understand how an AAI-expert perceives his world, generates

internal models, and how he is communicating with others, this is the subject

for a philosophical grounding of the preceding AAI analysis theory.

In case of the actor story we had introduced different modes to represent

possible meanings with symbolic expressions which have as their primary

point of reference the ’mental ontology ’ DATontol of the AAI experts. While

the mental ontology is assumed to be ’the same’ for all different modes

of symbolic articulation1, the different modes of articulation can express 1 Which is a highly idealistic assumption in
case of learning systemsdifferent aspects of the same mental ontology more highlighted than in other

modes of symbolic articulation.

In the case of expressions of some ’everyday language’ L0 like German

or English we have only symbols of some alphabet, concatenated to strings

of symbols or articulated as a stream of sounds. Thus an understanding

of the intended meaning is completely bound to the mental encoding of

these expressions, eventually associated with some other clues by body-

expressions, mimics, special contexts, and the like.

If we would use a ’pictorial language’ Lpict as in a comic strip, we would

52 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

have again some strings of symbols but mostly we would have sequences

of two-dimensional drawings with the symbols embedded. These drawings

can be very similar to th perceptual experience of spaces, objects, spatial

relations, timely successes, and more properties which somehow ’directly’

encode real situations. Thus the de-coding of the symbol expressions is

associated with a strong ’interpretation’ of the intended situations by ’world-

like pictures’. In this sense one could use such a pictorial language as a

’second hand ontology’ for the encoding of symbolic expressions into their

intended meaning.

But for the intended engineering of the results of an AAI analysis neither

the everyday language mode L0 nor the pictorial language mode Lpict is

sufficient. What is needed is a ’formal language’ Lε which can easily be

used for logical proofs, for automated computations, as well as for computer

simulations. One good candidate for such a formal language is a language

using mathematical graphs which are additional enriched with formal

expressions for properties and changes between states. This allows an

automatic conversion into automata which can simulate all these processes.

Additional one can apply automatic verification for selected properties, e.g.

for non-functional requirements!

REMARK: The following text has to be rewritten to fit to the topic of
philosophical grounding.

The Logical Space

Figure 9.1: The actor story (AS) and
the actor models (AMs) as symbolic
representations constituting a symbolic
space

Looking back to all these new concepts and complex relationships the

figure 9.1 may be of some help to get the whole picture at once.

1. The AAI experts begin their work with a problem document delivered by

some stakeholder.

2. The stakeholder usually is rooted in some part of the real world from

where he receives his inspiration for the problem and it is his way of

AS-AM PHILOSOPHY 53

understanding the world and his language which encodes the problem

into a problem document DP.

3. The AAI experts analyze the problem by developing in a first phase

an actor story (AS) which includes all the circumstances and all the

properties which are intended by the stakeholder. The actor story will be

realized at least in a textual, in a mathematical, and in a pictorial mode.

4. In a second phase they take the identified actors and develop actor

models (AM) to ’rationalize’ the behavior required by the actor story. This

will be done in a formal way.

5. Having a formal description of the actor story as well formal descriptions

of the actor models one can directly ’program’ a real computer with

these specifications. In that case the real computers are functioning as

simulators: the one simulator Σ simulating the actor story is representing

the actor story is the world of the simulation, and the different simulators

σ1, ..., σn simulating the different actors are actors in this world. The

interaction between the different simulators is realized by message

passing.

In this picture of the AAI analysis something important is missing: all

these formalizations and simulations of the actor story and the different actor

models have no defined physical appearance! All these formalizations are

represented as strings of symbols, formal expressions, even the pictorial

language in its strict form. Thus a grounding in the real world is still missing.

Creating the Symbolic Space

Figure 9.2: Creation of the symbolic space
by AAI-experts

To speak about the structure of the symbolic space, its shape, its struc-

ture, is of limited use as long it is not clear, how one can generate such a

symbolic space within a systems engineering process (SEP).

Here it is assumed that there exists a structured process of symbolic

space creation. This presupposes that every participating AAI expert has

a set of mental models (MMs) of his world view which represent for the

AAI expert the important properties of the kown world.(See for this 2 and 2 Gerd Doeben-Henisch. Philosophy of
the actor. eJournal uffmm.org, pages
1–8, 2018. ISSN 2567-6458. URL
https://www.uffmm.org/2018/03/20/

actor-actor-interaction-philosophy-of-the-actor/

https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/
https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/

54 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

figure ??) It is further assumed that the AAI experts have some languages

in common which allows the production of a symbolic space, which can

be shared by the whole team. Because this symbolic space is external

to all participants it can reflect back to the different authors and thereby

synchronizing the different individual mental models. In a finite set of

modifications occurring as an iterative process evolves the symbolic space

first as an actor story (AS), then as a finite set of actor models (AMs).

Creating such a symbolic space ’by hand’, ’manually’ is possible and

should always be possible in principle, but for more advanced symbolic

spaces one needs a support by specialized SW-tools or even – in the long

run – by specialized AI programs.

The Physical Space

Figure 9.3: The symbolic space extended
with simulators translated into the physical
space with physical actors as well as
physical assistive actors

To give the logical structures of the symbolic space a physical appear-

ance one has to translate those parts of the logical space into real things

which are necessary for the concrete work.

As you can see in figure 9.3 there are two kinds of actors which have to

be grounded in the real world of bodies: the assistive actor Aass and the

executing actor Aexec.

While the executing actor in case of human actors has not to be built but

to be recruited from possible candidates, the assistive actor has to be built

as a physical device.

Based on the actor story one can deduce general requirements for the

intended executive actor as ’task induced actor requirements (TAR)’ which

state what kinds of inputs the executive actor must be able to process and

what kinds of motor responses. From these required inputs and outputs one

can deduce a basic outline for required cognitive and emotional capabilities.

With regard to available candidates one can analyze the capabilities of a

AS-AM PHILOSOPHY 55

real person as actor induced actor requirements (AAR). If the TAR are not in

agreement with the AAR then either the candidate is not capable to do the

job or he has to be trained to gain the necessary capabilities.,

In case of the intended assistive actor there are also logical requirements

which can be deduced from the actor story, which describe how the assistive

actor should behave. But in this case there exist also additional human-

actor based psychological requirements which take into account what a

human-actor can perceive and how a human-actor can process perceived

information to be able to respond.

It is a special job to create a physical device by obeying these logical and

psychological requirements. Until today there is no automatic procedure

known to support this.

Because there is no 1-to-1 mapping from the requirements to the phys-

ical realization of the assistive actor and no 1-1 mapping from the logical

requirements to a real human executive actor it is necessary to organize a

series of tests with real human persons using the real assistive actor. Only

these tests of usability can reveal, how good the intended interaction of the

actors in the intended task works.

Multiple Actor Stories

Figure 9.4: The intended actors of an actor
story (AS) are living as real actors usually in
more than one actor story

Until now we have only looked to a single actor story (AS), that, which

just has to be created as a new one. But the intended actors as real actors

in a real world usually are living in more than one actor story either at

the same time or in different time slices, with a different actor story in a

different time slice. Nevertheless because a real person has a physical body

56 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

which needs different physical resources, physical transportations, physical

communications and more there are several interactions between different

actor stories. Thus, to make an actor story ’stable’ one has to include these

different kinds of interactions with accompanying actor stories from other

stakeholders.

10

Looking Forward

Having completed the AAI analysis according to the schema 1.1 one has to

continue the overall systems engineering process with logical design, im-

plementation, final validation and then deployment, to mention the minimal

layout of such a process.1 1 For a more detailed description of these
processes after the AAI analysis see the
paper Erasmus and Doeben-Henisch
(2011)

Louwrence Erasmus and Gerd Doeben-
Henisch. A theory of the system engineering
management processes. In ISEM 2011
International Conference. ISEM, 2011b.
Conference 2011, September 21-23,
Stellenbosch, South Africa

With this new version of a complete theory for AAI analysis (AAIA-TH) a

new option becomes available: either you can stop the systems engineering

process with the simulators at hand which allow lots of testing, of simula-

tions, of learning, even of fun when used for gaming, or you can continue

the system engineering process if you want to built some machinery which

departs from pure simulation into the realm of physical devices (’real car’,

’real airplane’, ’real power plant’, ’real city’, ...).

But there is a third option too: with the new ’wave’ ’internet of things (IoT)’

a paradigm is pushed where parts of the physical world are connected with

sensors and actuators such that some algorithm can control these real-

world parts by sensing or acting. In case of the simulators of the new AAI

analysis theory one can combine this IoT-paradigm with the AAIA theory.

This would expand the idea of Industry X.0 to the idea of World X.0; this

would represent the full paradigm of a ’digitization of the world’. This option

seems to be highly promising.

Everybody is invited to share the discussion of this new paradigm with

questions, critical remarks, hints, examples, whatever helps to clarify

this paradigm. The first address to contact the project is the eJournal:

uffmm.org, ISSN 2567-6458, Email: info@uffmm.org. We recommend as

start page: https://www.uffmm.org/2017/07/27/uffmm-restart-as-scientific-

workplace/

Bibliography

S. Abrahão, C. Gravino, E. Insfran, G. Scanniello, and G. Tortora. Assessing

the effectiveness of sequence diagrams in the comprehension of functional

requirements: Results from a family of five experiments. IEEE Transactions

on Software Engineering, 39(3):327–342, March 2013. ISSN 0098-5589.

DOI : 10.1109/TSE.2012.27.

Stuart K. Card, Thomas P. Moran, and Allen Newell. The Psychology of

Human-Computer Interaction. Lawrence Erlbaum Associates, Inc., Mahwah

(NJ), 1 edition, 1983.

G. Doeben-Henisch and M. Wagner. Validation within safety critical systems

engineering from a computational semiotics point of view. Proceedings

of the IEEE Africon2007 Conference, pages Pages: 1 – 7, 2007. DOI :

10.1109/AFRICON.2007.4401588.

Gerd Doeben-Henisch. Formal Specification and Verification: Short

Introduction. Gerd Doeben-Henisch, 2010.

Gerd Doeben-Henisch. Philosophy of the actor. eJournal uffmm.org, pages

1–8, 2018. ISSN 2567-6458. URL https://www.uffmm.org/2018/03/

20/actor-actor-interaction-philosophy-of-the-actor/.

Hermann Ebbinghaus. Űber das Geda̋chtnis: Untersuchungen zur

experimentellen Psychologie. Duncker & Humblot, Leipzig, 1 edition, 1885.

URL: http://psychclassics.yorku.ca/Tolman/Maps/maps.htm.

Hermann Ebbinghaus. Memory: A Contribution to Experimental Psychology.

Teachers College, Columbia University, New York, 1 edition, 1913. Trans-

lated from the German Edition 1885 by Henry A. Ruger & Clara E. Busse-

nius 1913, URL: http://psychclassics.yorku.ca/Ebbinghaus/index.htm.

Louwrence Erasmus and Gerd Doeben-Henisch. A theory of the system

engineering process. In 9th IEEE AFRICON Conference. IEEE, 2011a.

Louwrence Erasmus and Gerd Doeben-Henisch. A theory of the system en-

gineering management processes. In ISEM 2011 International Conference.

ISEM, 2011b. Conference 2011, September 21-23, Stellenbosch, South

Africa.

Hans J. Eysenk. Die IQ-Bibel. Intelligenz verstehen und messen.

J.G.Cotta’sche Buchhandlung Nachfolger GmbH, Stuttgart, 1 edition,

2004. Englische Originalausgabe 1998: Intelligence. A New Look.

https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/
https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/

60 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

F. Fellir, K. Nafil, and R. Touahni. Analyzing the non-functional require-

ments to improve accuracy of software effort estimation through case

based reasoning. In 2015 10th International Conference on Intelligent

Systems: Theories and Applications (SITA), pages 1–6, Oct 2015. DOI :

10.1109/SITA.2015.7358402.

Emden R. Gansner, Yehuda Koren, and Stephen North. Graph drawing by

stress majorization. In János Pach, editor, Graph Drawing, number 3383 in

Lecture Notes in Computer Science, pages 239 – 250, Berlin - Heidelberg.

Springer-Verlag.

Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gem-

Phong Vo. A technique for drawing directed graphs. IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, 19(3):214–230, 1993.

Emden R. Gansner, Eleftherios Koutsofios, and Stephen C.

North. Drawing graphs with dot. pages 1–40, 2015. Online:

http://www.graphviz.org/pdf/dotguide.pdf.

Jonathan Grudin. A Moving Target: The Evolution of HCI. In A. Sears

and J.A. Jacko, editors, The Human-Computer Interaction Handbook.

Fundamentals, Evolving Technologies, and emerging Applications. 2

edition, 2008.

Ernest R. Hilgard, Rital L. Atkinson, and Richard C. Atkinson. Introduction

to Psychology. Harcourt Brace Jovanovich, Inc., New York - San Diego -

Chicago - et.al., 7 edition, 1979.

H.L. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley Publ.Company, Reading (MA), 1 edition,

1979.

INCOSE. SYSTEMS ENGINEERING HANDBOOK. A GUIDE FOR

SYSTEM LIFE CYCLE PROCESSES AND ACTIVITIES. John Wiley &

Sons, Inc, Hoboken, New Jersey, 4 edition, 2015.

M. Kassab, O. Ormandjieva, and M. Daneva. An ontology based approach

to non-functional requirements conceptualization. In 2009 Fourth Inter-

national Conference on Software Engineering Advances, pages 299–308,

Sept 2009. DOI : 10.1109/ICSEA.2009.50.

F. Khalique, W. H. Butt, and S. A. Khan. Creating domain non-functional re-

quirements software product line engineering using model transformations.

In 2017 International Conference on Frontiers of Information Technology

(FIT), pages 41–45, Dec 2017. DOI : 10.1109/FIT.2017.00015.

X. Lian, J. Cleland-Huang, and L. Zhang. Mining associations between qual-

ity concerns and functional requirements. In 2017 IEEE 25th International

Requirements Engineering Conference (RE), pages 292–301, Sept 2017.

DOI : 10.1109/RE.2017.68.

Y. Liu, Z. Ma, R. Qiu, H. Chen, and W. Shao. An approach to integrating

non-functional requirements into uml design models based on nfr-specific

patterns. In 2012 12th International Conference on Quality Software, pages

132–135, Aug 2012. DOI : 10.1109/QSIC.2012.23.

BIBLIOGRAPHY 61

D. Mairiza, D. Zowghi, and V. Gervasi. Conflict characterization and anal-

ysis of non functional requirements: An experimental approach. In 2013

IEEE 12th International Conference on Intelligent Software Methodolo-

gies, Tools and Techniques (SoMeT), pages 83–91, Sept 2013. DOI :

10.1109/SoMeT.2013.6645645.

I. Menzel, M. Mueller, A. Gross, and J. Doerr. An experimental comparison

regarding the completeness of functional requirements specifications. In

2010 18th IEEE International Requirements Engineering Conference,

pages 15–24, Sept 2010. DOI : 10.1109/RE.2010.13.

Richard W. Pew. Introduction. Evolution of human-computer interaction:

From memex to bluetooth and beyond. In J.A. Jacko and A. Sears, editors,

The Human-Computer Interaction Handbook. Fundamentals, Evolving

Technologies, and emerging Applications. 1 edition, 2003.

Detlef H. Rost. Intelligenz. Fakten und Mythen. Beltz Verlag, Weinheim -

Basel, 1 edition, 2009.

Detlef H. Rost. Handbuch Intelligenz. Beltz Verlag, Weinheim - Basel, 1

edition, 2013.

A. Suhr, C. Rosinger, and H. Honecker. System design and architecture

?? essential functional requirements vs. ict security in the energy domain.

In International ETG-Congress 2013; Symposium 1: Security in Critical

Infrastructures Today, pages 1–9, Nov 2013.

Edward C. Tolman. Cognitive maps in rats and men. The Psychological

Review, 55(4):189–208, 1948. 34th Annual Faculty Research Lecture,

delivered at the University of California, Berkeley, March 17, 1947. Pre-

sented also on March 26, 1947 as one in a series of lectures in Dynamic

Psychology sponsored by the division of psychology of Western Reserve

University, Cleveland, Ohio.

B. Yin, Z. Jin, W. Zhang, H. Zhao, and B. Wei. Finding optimal solution

for satisficing non-functional requirements via 0-1 programming. In 2013

IEEE 37th Annual Computer Software and Applications Conference, pages

415–424, July 2013. DOI : 10.1109/COMPSAC.2013.69.

X. L. Zhang, C. H. Chi, C. Ding, and R. K. Wong. Non-functional require-

ment analysis and recommendation for software services. In 2013 IEEE

20th International Conference on Web Services, pages 555–562, June

2013. DOI : 10.1109/ICWS.2013.80.

Index

AAI, 14
AAI analysis, 17
AAI analysis formalized, 15
AAI analysis theory (AAIA-TH), 57
AAI check, 17
AAI-analysis structure, 14
AAI-expert philosophy, 16
AAR, 25, 55
actor, 28, 51
actor as iosys, 28
actor induced actor requirements, 25
actor model, 15, 27
Actor Story, 19
actor story, 15
actor-actor interaction, 13
actor-environment interaction, 28
algebraic structure, 28
algorithmic verification, 43
AM, 20, 27
AS and AM, 25
AS as graph, 34
AS-AM Philosophy, 51
assitive actor, 18
automaton execution graph, 40

basic typology IO-systems, 30
behavior error rate, 48
behavior model, 15, 18
best demonstrator, 47
BIntf, 28
Biology, 51
brain, 51
building assistive actors, 54

Card, 32
change, 24
classify AAR, 48
continuous learning, 31
creation symbolic space, 53
curve of satisfaction, 48

design interface, 16
deterministic behavior, 33
deterministic output set, 31
digitization of the world, 57

domain of reference, 23
dynamics of learning behavior, 48

empirical behavior function, 27
empirically motivated, 32
enhanced graph, 23
environment, 18, 28
everyday language, 20, 51
example electronic door, 33
executive actor, 18
expected behavior, 37
extended ordered graph (EOG), 39

finite automaton (FA), 40
fixed output set, 31
forgetting curve, 48
forgetting time, 37
formal language, 21, 51, 52
functions, 23
fuzzy predictions, 31

generate AAR, 48
generate output, 27
getting rewards, 31
GOAL, 33
GOMS model, 33
GOMS rule format, 33
graph, 22
graph-automaton conversion, 41

heuristic guide, 27
human actor, 55
human-computer interaction, 13
human-machine interaction, 13

INCOSE, 13
incremental output set, 31
inner model of outside world, 51
inner states, 38
input-output system, 28
intelligence, 37
interface, 18
interface design, 25, 30
interface requirements, 25
internet of things (IoT), 57

introduction, 13
IOSYS, 28

learning behavior, 37
learning curve, 48
learning IOSYS, 31
learning time, 37
license, 4
logical space, 52
looking forward, 57

manager of SEP, 14
MAS, 22
mathematical actor story, 22
mathematical AS, 23
measure behavior, 27
mental ontology, 20, 51
METHOD, 33
model, 28
model as hypothesis, 38
Moran, 32
multiple actor stories, 55

names, 23
Newell, 32
no 1-1 mapping, 55
non-deterministic behavior, 33
non-empirically motivated, 32

objective behavior data, 48
objects, 51
observe behavior, 27
OPERATOR, 33
optimal design interface, 16
optimal rewards, 31
optimal value, 47

PARC, 32
PAS, 21
Philosopher of Science, 14
philosophical grounding, 51
philosophy of AAI expert, 51
physical design, 45
physical space, 54
pictorial actor story, 21

64 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 22.JULY 2018

pictorial language, 20, 52
predict behavior, 27
preface, 11
problem description, 14
problem document, 15, 17
process input, 27
properties, 23
property-extended finite automaton

(PFA), 40
Psychology, 51

questionnaire for feelings, 48

random output set, 30
real interface, 29

recruiting executing actors, 54
respond, 27
reward, 31
RIntf, 29

SELECTION, 33
semantic gap, 17
sense, 27
simulating automaton, 21
simulation, 39
simulation model, 39
situation, 51
stakeholder, 14, 17
state, 51

symbolic space, 39
systems engineering, 13

TAR, 24, 55
TAS, 21
task, 18
task induced actor requirements, 24
test candidates, 48
test series, 48
textual actor story, 21
theoretical behavior function, 27

usability test, 47
usability testing, 47

	Preface
	Introduction
	Actor-Actor Interaction Analysis
	Problem Document
	Check for AAI-Analysis
	Behavior Model

	Actor Story (AS)
	First Concepts
	Textual Actor Story (TAS)
	Task Induced Actor Requirements (TAR)
	Actor Induced Actor Requirements (AAR)
	Interface-Requirements and Interface-Design
	Actor Model and Actor Story

	Actor Model (AM)
	Actor as Input-Output System
	Input-Output Systems Basic Typology
	Empirically and Non-Empirically Motivated
	Measuring Dynamic Behavior

	Simulation
	Algorithmic Verification
	Physical Design
	Usability Testing
	AS-AM Philosophy
	The Logical Space
	Creating the Symbolic Space
	The Physical Space
	Multiple Actor Stories

	Looking Forward
	Bibliography
	Index

