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Introduction

This book is our first trial to bring together such diverse topics
like Human-Machine Interaction, Systems Engineering, Philosophy
of Science, and Artificial Intelligence.

The text points back to the the paper "AAI - Actor-Actor Interac-
tion. A Philosophy of Science View" from 3.Oct.2017 and version 11

of the paper "AAI - Actor-Actor Interaction. An Example Template"
and it transforms these views in the new paradigm ’Actor- Actor
Systems Engineering’ understood as a theory as well as a paradigm
for and infinite set of applications. In analogy to the slogan ’Object-
Oriented Software Engineering (OO SWE)’ one can understand the
new acronym AASE as a systems engineering approach where the
actor-actor interactions are the base concepts for the whole engi-
neering process. Furthermore it is a clear intention to view the topic
AASE explicitly from the point of view of a theory (as understood
in Philosophy of Science) as well as from the point of view of pos-
sible applications (as understood in systems engineering). Thus
the classical term of Human-Machine Interaction (AAI) or even the
older Human-Computer Interaction (HCI) is now embedded within
the new AASE approach. The same holds for the fuzzy discipline
of Artificial Intelligence (AI) or the subset of AI called Machine
Learning (ML). Although the AASE-approach is completely in its
beginning one can already see how powerful this new conceptual
framework is.

Additionally there exists a long ’conceptual history’
leading back to the Philosophy-of-Science studies of Doeben-
Henisch 1983 - 1989 in Munich under the guidance of Peter Hinst,
many intensive discussions between Doeben-Henisch and Erasmus
about Systems engineering since 1999, a paper written by Doeben-
Henisch and Wagner 2007

1 with ongoing discussions since then,

1 G. Doeben-Henisch and M. Wag-
ner. Validation within safety critical
systems engineering from a com-
putational semiotics point of view.
Proceedings of the IEEE Africon2007
Conference, pages Pages: 1 – 7, 2007.
doi: 10.1109/AFRICON.2007.4401588

a lecture by Doeben-Henisch about formal specification and veri-
fication in 2010

2, two papers by Erasmus and Doeben Henisch in 2 Gerd Doeben-Henisch. Formal
Specification and Verification: Short
Introduction. Gerd Doeben-Henisch,
2010

2011
3, about 20 regular semesters with the topic Human-Machine

3 Louwrence Erasmus and Gerd
Doeben-Henisch. A theory of the
system engineering process. In ISEM
2011 International Conference. IEEE,
2011a; and Louwrence Erasmus and
Gerd Doeben-Henisch. A theory of
the system engineering management
processes. In 9th IEEE AFRICON
Conference. IEEE, 2011b

Interaction by Doeben-Henisch at the Frankfurt University of Ap-
plied Sciences (Frankfurt, Germany)(unpublished) in the timespan
2005 - 2015, two regular semesters with the topic AAI together
with Tuncer in SS2016 and WS2016 at the Frankfurt University of
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Applied Sciences (Frankfurt, Germany) (unpublished), and two
workshops with Erasmus in summer 2016 and Spring 2017 (unpub-
lished). Additionally many discussions between Doeben-Henisch
and Idrissi about AI and AAI since 2015.



1
Preparing the Viewpoint

A certain point of view has to taken by the reader to understand
the following considerations. Why should one change the known
paradigm of ’Human-Machine Interaction (HMI)’ in the layout of
Actor-Actor Interaction as preferred in this text.

History: From HCI to AAI

To speak of ’Actor-Actor Interaction (AAI)’ instead of ’Human-
Computer Interaction (HCI)’ is rooted in the course of history.
When the World War II ended several advances in technology and
software gave raise to great expectations and visions what the
future can bring mankind to improve life.1 1 For some ’bits of history’ see Doeben-

Henisch (2018)
Gerd Doeben-Henisch. From

hci to aai. some bits of history?
eJournal uffmm.org, pages 1–16,
2018a. ISSN 2567-6458. URL
https://www.uffmm.org/2018/04/19/

from-hci-to-aai-some-bits-of-history/

Looking to the course of events between 1945 and about 2000

one can observe a steady development of the hardware and the
software in many directions. This caused an explosion in many
variants of new applications and usages of computer. This contin-
uous challenge of how human persons can interact with this new
technology provoked a rapid development what has been called in
the beginning ’Human Computer Interaction (HCI)’. But with the
extension of the applications in nearly all areas of daily live from
workplace, factory, to education, health, arts and much more the
interaction was no longer restricted to the ’traditional’ computer
but interaction happened with all kinds of devices which internally
or in the background used computer hardware and software. Thus
a ’normal’ room, a ’normal’ street, a ’normal’ building, a toy, some
furniture, cars, and much more turned into computerized devices
with sensors and actuators. At the same time the collaborators
of human persons were not only other human persons or certain
animals but more and more ’intelligent’ machines, robots, smart
interfaces. Thus to speak of a ’human user’ interacting with a ’tech-
nical interface’ was no longer appropriate. A more appropriate
language game is the new talk of ’interacting actors’, which can be
sets of different groups of actors interacting in some environment
to fulfill a task. Actors are then biological systems (man as well as
animals) and non-biological systems.

https://www.uffmm.org/2018/04/19/from-hci-to-aai-some-bits-of-history/
https://www.uffmm.org/2018/04/19/from-hci-to-aai-some-bits-of-history/


16 actor actor interaction [aai] within a systems engineering process (sep) an actor

centered approach to problem solving version 4.july 2018

Engineering: Different Views

Figure 1.1: Engineering process with
diferent kinds of actors

If one wants to deal with the development of optimal interfaces
within certain tasks for executing actors2 one can distinguish 2 Today still mostly human persons.

different views onto this problem (see figure 1.1).
The common work view in systems engineering is an expert (EXP)

as part of a systems engineering process (SEP) who takes a problem
description Dp and does some analysis work to find an optimal
solution candidate (OSC).

One level above we have the manager (MNG) of the systems engi-
neering process, who is setting the framework for the process and
has to monitor its working.

Another upper level is the philosopher of science (POS) who is
looking onto the managers, processes, and their environments and
who delivers theoretical models to describe these processes, to simulate
and to evaluate these.

In this text the Actor-Actor Interaction (AAI) is the main focus,
embedded in a Systems Engineering Process (SEP), all embedded in a
minimal Philosophy of Science (PoS) point of view.

For this the following minimal SEP-structure is assumed3: 3 For the first paper of Erasmus
together with Doeben-Henisch about
this subject see

Louwrence Erasmus and Gerd
Doeben-Henisch. A theory of the
system engineering process. In ISEM
2011 International Conference. IEEE,
2011a

SEP(x) i f f x = 〈P, S, Sep〉 (1.1)

Sep : P −→ S

Sep = α⊗ δ⊗ µ⊗ υ⊗ o

α := Analysis o f the problem P

δ := Logical design

σ := Implementation o f S

υ := Validation

o := Deployment
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The outcome of the analysis of an AAI-expert is an optimal solu-
tion candidate (OSC) for an interface of an assisting actor embedded
in a complete behavior model MSR given as an actor story (AS) com-
bined with possible actor models (AMs). This output provides all in-
formations needed for a following logical design. The logical design
provides the blue-print for a possible implementation of a concrete
working system whose behavior should be in agreement (checked
through a validation phase) with the behavior model provided by
the AAI-analysis.

Philosophy of the AAI-Expert

Before digging into the details of the following actor-actor inter-
action (AAI) analysis done by an AAI-expert one has to consider
the conditions under which the AAI-expert is doing his job. These
considerations are done in a separate paper called ’Philosophy of
the AAI-Expert’ (see Doeben-Henisch (2018) 4). 4 Gerd Doeben-Henisch. Philosophy

of the actor. eJournal uffmm.org, pages
1–8, 2018b. ISSN 2567-6458. URL
https://www.uffmm.org/2018/03/20/

actor-actor-interaction-philosophy-of-the-actor/

The main topic in the philosophy paper is centered around the
findings of modern biology and psychology that the ability of
human persons to use a set theoretical language Lε to talk about
the experiences with the world is grounded in the cognitive ma-
chinery of human persons including complex processes related to
perception, memory, spatial and temporal thinking, embedding of
languages and others. Because the human brain in the body is not
directly interacting with the outside world but mediated by sensors
and actuators it is this complex cognitive machinery which con-
structs an inner model of the outside world. And it are exactly the
properties of this ’inner model’ which provide a ’point of reference’
for all our thinking and talking.

One conclusion from these considerations is that the reality for
a human person is basically perceived as a stream of events, which
can be divided in distinguishable situations, called states. A state is
understood as a set of properties embedded in a three-dimensional
space. If at least one property changes a state changes. Subsets
of properties can be understood as objects, which in turn can be
subdivided into ’actors’ and ’non-actors’. Actors can ’sense’ their
environment and they can ’respond’. More distinctions are possible
as needed.

To understand how an AAI-expert perceives his world, generates
internal models, and how he is communicating with others, one has
to clarify these philosophical groundings.

https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/
https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/




2
Actor-Actor Analysis

After these introductory remarks we start with the Actor-Actor
analysis (AAI-analysis) within the systems engineering process.
One has to provide a problem to be solved as initial step.

Problem to be Solved

1. The problem document DP is the result of a communication be-
tween some stakeholder (SH) and some experts, which have dis-
cussed a problem P which the stakeholder wants to be solved. In
this context it suffices to describe shortly in the introduction of
the problem document which persons have been participating
in the communication with their communication addresses for
further questions.

2. Due to the fuzziness of human communication one has to as-
sume to a certain degree a semantic gap with regard to the par-
ticipants of the communication which generated the problem
document as well as for potential readers of the problem docu-
ment.1 1 For an early discussion of one of

the authors about the semantic-gap
problem see Doeben-Henisch &
Wagner (2007) .

G. Doeben-Henisch and M. Wag-
ner. Validation within safety critical
systems engineering from a com-
putational semiotics point of view.
Proceedings of the IEEE Africon2007
Conference, pages Pages: 1 – 7, 2007.
doi: 10.1109/AFRICON.2007.4401588

3. Additionally to the general problem a finite set of special con-
straints (C) can be given, which correspond to the traditional
’non-functional requirements’. To do this in the right way one
has to describe the ’intended meaning’ of these constraints in
a way that it is possible either to decide, whether this intended
meaning is fulfilled by the following actor story and actor mod-
els or that these constraints pointing to the follow up phases of
the systems engineering process.

Check for AAI-Analysis

Within the general analysis phase of systems engineering the AAI-
perspective constitutes a special view. This implies a check of the
occurrence of the following aspects:

1. At least one task (T) and

2. an environment (ENV) for the task and

3. an executive actor (ExecA) as the intended user.
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AAI-Analysis

The goal of the AAI-analysis is to find an optimal assistive actor
(AssA)2 to support the executive Actor (ExecA)3 in his task. For this 2 Traditionally understood as the

technical interface.
3 Traditionally understood as the
human user.

to achieve one needs an iterative application of the whole AAI-
analysis process whose results are evaluated for an optimal solution.

To analyze the problem P one has to dig into the problem P so
far that one is able to tell a complete story, how to understand and
later to realize the task.

It can be some work to investigate the details of such a story. The
investigation is complete if the resulting story is sound, that means
all participants agree that they understand the story and that they
accept it.

To communicate a story we assume the following main modes:
textual, pictorial, mathematical, as well as simulation. Actually it is not
clear whether one should prefer the sequence textual − pictorial −
f ormal − simulation or textual − f ormal − pictorial − simulation.
Below the first sequence is used.,



3
Actor Story (AS)

To communicate a story in the main modes textual, pictorial, math-
ematical as well as simulated one has to consider the above men-
tioned epistemological situation of the AAI-expert.

The point of view underlying the description of an actor story AS
is the so-called 3rd-person view. This means that all participating
objects and actors are described from their outside. If an actor acts
and changes some property through it’s action it is not possible in
a 3rd-person view to describe the inner states and inner processes,
that enabled the actor to act and why he acts in this way. To over-
come the limits of a 3rd-person view one has to construct additional
models called Actor Models (AMs). For more details have a look to
the section ??.

The relationship between the traditional ’functional requirements
(FR)’ and the ’actor story’ is such, that all necessary functional
requirements have to be part of the actor story. The ’non-functional
requirements (NFR)’ have to be defined in their intended meaning
before the actor story and then it must be shown, how the structure
of the actor story ’satisfies’ these criteria., In this sense are the ’non-
functional requirements’ presented as ’constraints’ which have
the status of ’meta-predicates’, which have to be designed in an
appropriate ’control logic’ for actor stories.

The topic of ’Non-Functional Requirements (NFRs)’ as well as
’Functional Requirements (FRs)’ and their relationship is a hot topic
in systems engineering and has not yet a complete solution. The
general problem is how to ’represent’ the NFRs in a way, that these
can be handled in the overall system. The big advantage of the
AASE paradigm in this context is that the mathematical version of
the actor story provides a formal structure which allows to describe
all functional requirements (FRs) in a formal way which allows the
annotation of non-functional requirements (NFRs) easily.

The Philosophy behind the Actor-Story concept – as pointed out in
the figure 3.1 – is given in a draft paper by Doeben-Henisch (2018)
1 describing the basic relationships between the empirical external 1 Gerd Doeben-Henisch. Philosophy

of the actor. eJournal uffmm.org, pages
1–8, 2018b. ISSN 2567-6458. URL
https://www.uffmm.org/2018/03/20/

actor-actor-interaction-philosophy-of-the-actor/

world with the body as a part and the internal, mental, structures
and processes enabling things like concepts, memories, languages
with meaning etc.

From this one can derive that different modes to represent

https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/
https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/
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Figure 3.1: Basic Mappings between
empirical reality with body as a part
and internal mental structuresempirical matters with symbolic expressions like a language L

have as primary point of reference the ’mental ontology’ DATontol of
the AAI experts. While the mental ontology is assumed to be ’the
same’ for all different modes of symbolic articulation2, the different 2 Which is a highly idealistic assump-

tion in case of learning systemsmodes of articulation can express different aspects of the same
mental ontology more highlighted than in other modes of symbolic
articulation.

In the case of expressions of some ’everyday language’ L0 like
German or English we have only symbols of some alphabet, con-
catenated to strings of symbols or articulated as a stream of sounds.
Thus an understanding of the intended meaning is completely
bound to the mental encoding of these expressions, eventually asso-
ciated with some other clues by body-expressions, mimics, special
contexts, and the like.

If we would use a ’pictorial language’ Lpict as in a comic strip, we
would have again some strings of symbols but mostly we would
have sequences of two-dimensional drawings with the symbols
embedded. These drawings can be very similar to th perceptual
experience of spaces, objects, spatial relations, timely successes, and
more properties which somehow ’directly’ encode real situations.
Thus the de-coding of the symbol expressions is associated with
a strong ’interpretation’ of the intended situations by ’world-like
pictures’. In this sense one could use such a pictorial language as
a ’second hand ontology’ for the encoding of symbolic expressions
into their intended meaning.

But for the intended engineering of the results of an AAI anal-
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ysis neither the everyday language mode L0 nor the pictorial lan-
guage mode Lpict is sufficient. What is needed is a ’formal language’
Lε which can easily be used for logical proofs, for automated com-
putations, as well as for computer simulations. One good candidate
for such a formal language is a language using mathematical
graphs which are additional enriched with formal expressions for
properties and changes between states. This allows an automatic
conversion into automata which can simulate all these processes.
Additional one can apply automatic verification for selected proper-
ties, e.g. for non-functional requirements!

From this we derive the following main modes of an actor story
in this text: (i) Everyday language L0(here English), (ii) Pictorial
language Lpict (in this version of the text not yet defined), (iii)
Formal langauge Lε, (iv) Converted automaton αLε out of the
formal language, which can simulate the actor story.

The additional actor models described after the actor story can
be seen as special extensions of the actor story and have to be
included in the simulation mode. This is straightforward but has
also not yet been included in this version of the text.

Textual Actor Story (TAS)

An actor story AS in the textual mode is a text composed by expres-
sions of some everyday language L0 – default here is English LEN

–. This text describes as his content a sequence of distinguishable
states. Each state s – but not an end-state – is connected to at least
one other follow-up state s′ caused by the change of at least one
property p which in the follow up state s′ either is deleted or has been
newly created.

Every described state s is a set of properties which can be sub-
distinguished as objects (OBJ) which are occurring in some envi-
ronment (ENV). A special kind of objects are actors (As). Actors are
assumed to be able to sense properties of other actors as well as of
the environment. Actors are also assumed to be able to respond to
the environment without or with taking into account what happened
before.

Actors are further sub-divided into executive actors as well as
assistive actors. Assistive actors Aassist are those who are expected
to support the executive actors Aexec in fulfilling some task (t) (with
t ∈ T).

A task is assumed to be a sequence of states with a start state
sstart and a goal state sgoal , where the goal-state is an end state. The
set of states connecting the start and the goal state is finite and
constitutes a path p ∈ P. There can be more than one path leading
from the start state to the goal state. The states between the start
and the goal state are called intermediate states.

Every finished actor story has a least one path.3 3 To turn a textual actor story into an
audio actor story (AAS) one can feed
the text into a speech-synthesis program
which delivers spoken text as output.
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Pictorial Actor Story (PAS)

In case of an textual actor story (TAS) – as before explained – one
has a set of expressions of some common language L0. These
expressions encode a possible meaning which is rooted in the inner
states (IS) of the participating experts. Only the communicating
experts know which meaning is encoded by the expressions.

This situation – labeled as semantic gap – can cause lots of misun-
derstandings and thereby errors and faults.

To minimize such kinds of misunderstandings it is a possible
strategy to map these intended meanings in a pictorial language
Lpict which has sufficient resemblances with the intended meaning.
Replacing the textual mode by a story written with a pictorial lan-
guage Lpict can show parts of the encoded meaning more directly.

As one can read in the section 1.3 ’Philosophy of the View-Point’
(and in the figure 3.1) the world of objects for a standard user is
mapped into a spatial structure filled with properties, objects, actors
and changes. This structure gives a blue-print for the structure
of the possible meaning in an observer looking to the world with
a 3rd-person view. Therefore a pictorial language can substitute
the intended meaning to some degree if the pictorial language
provides real pictures which are structurally sufficient similar to the
perceived visual structure of the observer.

To construct a pictorial actor story (PAS) one needs therefore
a mapping of the ’content’ of the textual actor story into an n-
dimensional space embedded in a time line. Every time-depended
space is filled with objects. The objects show relations within the
space and to each other. Objects in space, the space itself, and
the changes in time are based on distinguishable properties. To
conserve a consistency between the textual and the pictorial mode
one needs a mapping between these both languages: π : L0 ←→
Lpict.

Mathematical Actor Story (MAS)

To translate a story with spatial structures and timely changes into a
mathematical structure one can use a mathematical graph γ extended
with properties Π and changes Ξ for encoding.

A situation or state q ∈ Q given as a spatial structure corresponds
in a graph γ to a vertex (also called ’node’) v, and a change ξ ∈ Ξ
corresponds to a pair of vertices (v, v′) (also called an ’edge’ e ∈ E).

If one maps every vertex v ∈ V into a set of property-expressions
π ∈ 2LΠ with λ : V 7−→ 2LΠ and every edge e ∈ E into a set of
change-expressions LΞ with ε : E 7−→ 2LΞ then a vertex in the graph
γ with the associated property-expressions can represent a state
with all its properties and an edge e followed by another vertex v′

labeled with a change-expression can represent a change from one
state to its follow-up state.

A graph γ extended with properties and changes is called an
extended graph γ+.
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Thus we have the extended graph γ+ given as:

γ+(g) i f f g = 〈V, E, LΠ, Lχ, λ, ε〉 (3.1)

E ⊆ V ×V (3.2)

λ : V −→ 2LΠ (3.3)

ε : E −→ 2LΞ (3.4)

Figure 3.2: Change event between two
states

The occurrence of a change is represented by two vertices v, v′

connected by an edge e as e : {v} 7−→ {v′}. The follow-up vertex v′

has at least one property-expression less as the vertex v or at least
one property-expression more. This change will be represented in
a formal change-expression ε ∈ Lχ containing a list of properties to
be deleted as d : {p1, p3, ...} and properties to be newly created as
c : {p2, p4, ...}.

The deletion-operation is shorthand for a mapping of subtracting
property-expressions like d : {s} 7−→ s − {p1, p3, ...} and the
creation-operation is shorthand for a mapping of adding property-
expressions like c : {s} 7−→ s ∪ {p2, p4, ...}. Both operations
are processed in a certain order: first deletion and then addition,
change = d⊗ c.

These conventions define the actor story as formal mathematical
graph enhanced by formulas form properties and formal expres-
sions for changes.

Objects and Actors Every assumed object o ∈ OBJ attached to a
vertex represents a sub-set of the associated properties. An actor
a ∈ A is a special kind of object by A ⊆ OBJ.

1. Generally it is assumed that there exists some ’domain of ref-
erence’ DR which corresponds to a situation/ state of an actor
story.
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2. For every ’object’ in DR one can introduce a ’name’ realized as
a string of ’small alphanumeric letters’ beginning with a ’capital
letter’. Names are a subset of terms. Examples: ’Hobbes’, ’U2’,
’Moon’, ....

3. Mappings from distinct objects into other distinct objects which
have all to be objects of DR are called ’functions’ realized as a
string of ’small alphanumeric letters’ followed by n-many terms
enclosed in brackets. Functions are as well a subset of terms.
Examples: ’add(3,4)’, ’push(Button1)’, ...’.

4. ’Properties’ Π are relations between objects in an assumed
’domain of reference’ DR. The properties are symbolically repre-
sented by property expressions LΠ which are realized by n-many
terms functioning as ’arguments’ of n-ary ’predicates’. Thus a
property-expression is a sequence of an n-ary ’predicate’ as a
string of ’big alphanumeric letters’ enriched with the ’-’-sign
followed by n-many terms as arguments enclosed in brackets.
Example: ’USER(U1)’, ’SCREEN(S)’, BUTTON(B1)’, ’IS-PART-
OF(B1,S)’, ’ON(push(B1))’, ...

5. As stated above there exists a mapping from states into sets of
property expressions written as λ : V −→ 2LΠ

1. A change in the domain DR happens when at least one prop-
erty disappears or emerges. To express this symbolically one
has to assume (as stated above) that there are two formal states
v, v′ each with property expressions Lv

Π, Lv′
Π and the property

expressions from follow-up state v′ are generated by applying
a ’change-action’ realized as a function α ∈ ACT to the preced-
ing state v. The change action has a ’name’ realized by a string
of ’small alphanumeric values’ followed by a ’delete function’
named ’delete’ (or short ’d’) and then by a ’creation function’
named ’create’ (or short ’c’). Thus the change action α is a con-
catenated operation α = d()⊗ c(). The arguments of the delete-
and create-function are property expressions.

2. Example: if there is a set of property expressions Lv
Π = {SCREEN(S), BUTTON(B1), NOT−

PRESSED(B1)} and a change action α(Lv
Π) with the sub-functions

d(NOT − PRESSED(B1)) and c(PRESSED(B1)) then the result-
ing follow-up property set looks like Lv′

Π = {SCREEN(S), BUTTON(B1), PRESSED(B1)}

3. The complete change expression will be realized as a ’list’:
〈v, v′, α, d(p1, ..., pn), c(p1, ..., pm)〉. This reads: a change action
with name α has been applied to state v and generates a new
state v′ by (i) copying the properties from state v to state v′, then
(ii) deletes the properties (p1, ..., pn) in v′, and then (iii) creates
the properties (p1, ..., pm) in v′. The result of applying (i) - (iii) to
the old state v generates the new state v′.

4. Thus change statements are terms derived as a subset as follows:
ε ⊆ V × V × ACT × ΠNat × ΠNat (with Nat as the natural
numbers including 0).4 4 The default assumption is that either

the delete or the create function has to
have at least one property argument.



actor story (as) 27

5. If there is in one state v more than one action possible than
more than one change statement is possible. This results in more
than one edge leading from state v to n-many follow-up states
v′1, ..., v′n.

6. Additional to the names of possible objects we assume a special
operator ’not(n)’ applied to a name ’n’. The meaning of the
operator is, that in this case not the name ’n’ is valid, but the
’absence’ of the object signified by the name n’. This is important
because otherwise in case of many alternative options one has to
enumerate all alternatives to an object named ’n’.

Correspondence between mathematical and pictorial modes To keep the
consistency between a mathematical and a pictorial actor story one
needs a mapping from the pictorial actor story into the mathemati-
cal actor story and vice versa, mp.m : Lpict ←→ Lmath.

Simulated Actor Story (SAS)

A simulated actor story (SAS) corresponds to a given extended graph
γ+ by mapping the extended graph into an extended automaton α+.

The usual definition of a finite automaton is as follows: 〈Q, I, F, Σ, ∆〉
with

1. Q as a finite set of states

2. I ⊆ Q as the set of initial states

3. F ⊆ Q as the set of final states

4. Σ as a finite input alphabet

5. ∆ ⊆ Q × Σ∗ × Q as the set of transitions

If one replaces/ substitutes the states by vertices, the input expres-
sions by change-expressions and the transitions by edges then one gets:
〈V, I, F, Lχ, E〉 with

1. V as a finite set of states

2. I ⊆ V as the set of initial states

3. F ⊆ V as the set of final states

4. Lχ as a finite set of input expressions

5. E ⊆ V × Lχ ×V as the set of transitions

Finally one extends the structure of the automaton by the set
of property-expressions LΠ as follows: 〈V, I, F, Lχ, LΠ, E, λ〉 with
λ : V −→ 2LΠ .

With this definition one has an extended automaton α+ as an au-
tomaton who being in state v recognizes a change-expression ε ∈ Lχ

and generates as follow-up state v′ that state, which is constructed
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out of state v by the encoded deletions and/ or creations of proper-
ties given as property-expressions from LΠ. All state-transitions of
the automaton α+ from a start-state to a goal-state are called a run
ρ of the automaton. The set of all possible runs of the automaton is
called the execution graph γexec of the automaton α+ or γexec(α+).

Thus the simulation of an actor story corresponds to a certain run
ρ of that automaton α+ which can be generated out of a mathemati-
cal actor story by simple replacement of the variables in the graph
γ+.

Task Induced Actor Requirements (TAR)

Working out an actor story in the before mentioned different modes
gives an outline of when and what participating actors should do in
order to realize a planned task.

But there is a difference in saying what an actor should do and
in stating which kinds of properties an actor needs to be able to show
this required behavior. The set of required properties of an actor is
called here the required profile of the actor A RPro fA. Because the
required profile is depending from the required task, the required
profile is not a fixed value.

In the general case there are at least two different kinds of actors:
(i) the executing actor Aexec and (ii) the assistive actor Aassis. In this
text we limit the analysis to the case where executing actors are
humans and assistive actors machines.

Actor Induced Actor Requirements (AAR)

Because the required profile RPro frequ of an executive actor realiz-
ing a task described in an actor story can be of a great variety one
has always to examine whether the available executing actor Aexec

with its available profile RPro favail is either in a sufficient agreement
with the required profile or not, σ : RPro frequ × RPro favail 7−→ [0, 1].

If there is a significant dis-similarity between the required and
the available profile then one has to improve the available executive
actor to approach the required profile in a finite amount of time
χ : Aavail,exec × RPro frequ 7−→ Arequ,exec. If such an improvement
is not possible then the planned task cannot be realized with the
available executing actors.

Interface-Requirements and Interface-Design

If the available executing actors have an available profile which is
in sufficient agreement with the required profile then one has to
analyze the interaction between the executing and the assistive actor
in more detail.

Logically the assistive actor shall assist the executing actor in
realizing the required task as good as possible.
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From this follows that the executing actor has to be able to
perceive all necessary properties in a given situation, has to process
these perceptions, and has to react appropriately.

If one calls the sum of all possible perceptions and reactions the
interface of the executing actor Int fA,exec and similarly the sum of all
possible perceptions and reactions of the assistive actor the interface
of the assistive actor Int fA,assis,then the interface of the assistive actor
should be optimized with regard to the executing actor.

To be able to know more clearly how the interface of the assistive
actor Int fassis should look like that the executive actor can optimally
perceive and react to the assistive interface one has to have suffi-
cient knowledge about how the executive actor internally processes
its perceptions and computes its reactions. This knowledge is not
provided by the actor story but calls for an additional model called
actor model.

Actor Model and Actor Story

While one can describe in an actor story (AS) possible changes seen
from a 3rd-person view one can not describe why such changes
happen. To overcome these limits one has to construct additional
models which describe the internal states of an actor which can
explain why a certain behavior occurs.

Figure 3.3: Change event with an
embedded actor

The general idea of this interaction between actor story and actor
model can be seen in figure 3.3.

1. In a simple actor story with only two states v, v′ we have an
actor called ’USER(U1)’ which has ’visual perception’ and which
can act with ’motor activities’.

2. Therefore the actor can ’see’ properties like ’SCREEN’, ’BUT-
TON’, and ’NOT-PRESSED’. Based on its ’behavior function’ Φ
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the actor can compute a possible output as a motor-action, de-
scribed as an event expression 〈v, v′, press(BUTTON(B1)), d(not−
pressed(B1)), C : (pressed(B1))〉.

3. This results in a change leading to v′. The actor U1 is left out in
v′, also it is still part of v′.



4
Actor Model (AM)

Seen from the actor story the processing of the task requires that an
actor can sense all necessary aspects of the task processing as well as
he can respond as needed. Besides this one expects that the actor is
able to process the input information (I) in a way that the actor is able
to generate the right Output (O). One can break down the required
behavior to a series of necessary inputs I for the actor followed by
necessary responses O of the actor . This results in a series of input-
output pairs pairs {(i, o), · · · , (i, o)} defining implicitly a required
empirical behavior function:

φe = {(i, o), · · · , (i, o)} (4.1)

Because any such empirical behavior function is finite and based
on single, individual events, it is difficult to use this empirical finite
function as the function of an explicit model. What one needs is an
explicit general theoretical behavior function like:

φ : I 7−→ O (4.2)

Although an empirical behavior function φe is not a full behavior
function, one can use such an empirical function as a heuristic
guide to construct a more general theoretical function as part of a
complete hypothetical model of the actor.

It is an interesting task, to elaborate a hypothetical model of the
internal processes of an actor which defines thetheoretical behavior
function φ. To do this broadly with all details is beyond the scope of
this text. Instead we will work out a first basic model which can be
understood as a kind of a template for theoretical behavior functions,
which can be extended further in the future.

The task of modeling a possible actor is twofold: first (i) one
has to define a complete formal model of a possible structure and
it’s dynamic, second (ii) it must be possible to predict the behavior
of the model in a way that it is possible to observe and measure
this behavior. If the observable behavior of the model is including
the empirical behavior function φe, then the hypothetical model is
empirical sound in a weak sense.
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φe ⊆ φ (4.3)

We understand here a model as a mere collection of rules, while
an algebraic structure is an extension of a model by including ad-
ditional sets as well as axioms. But we use the term ’model’ here
equivalently to the term ’algebraic structure’.

Actor as Input-Output System

To enable a transparent interaction between actor and environment
it will be assumed that an actor is generally an input-output system
(IOSYS) , that means that an actor has (i) inputs (I) from the envi-
ronment (here the actor story), which are translated by some kind
of a ’sensoric system’ generating inputs (I) for the receiving actor as
well as (ii) outputs (O) from the actor which can cause changes in
the environment. The sum of all inputs I and outputs O defines the
basic interface (BIntf) of an input-output system S in an environment
E.

To define this more explicitly we will define the following terms:
Environment (E), Input-Output system (IOSYS) as well as Actor (A).
As Interface between the actor and the environment we have also
the Basic Interface (BIntf).

The actors (ACT) are understood as input-output systems
(IOSYS).

It is difficult to describe formally the interaction between an
environment (E) and an actor (A). The environment offers existing
properties which can change from time to time. The possible ’effect’
of these properties and their changes depend on the built-in sensor
functions of the actor. Thus the stimulus-function σ of the environ-
ment can map some subset of properties of the environment onto
some actor, but which effect these mapped properties will have
as internal input (I) in the actor depends from the actor-specific
sensor functions σA. Thus we have a chain σE : 2Π 7−→ ACT and
then σA : rn(σE) 7−→ IA. The same is true for the backward chain
from the outputs of an actor to the environment: An actor A has
generated internally some outputs OA which are first translated
by its motor function µA into some external properties of the actor
A, which in turn are then translated by the response function of
the environment µ into some effects represented as deletion of ex-
isting properties 2Π− as well as of creation of new properties 2Π+:
µA : OA 7−→ OA,resp and then µ : rn(µA) 7−→ 2Π− ∪ 2Π+.

Thus we get a hierarchical embedding of structures:

ENV(E) := Environment E (4.4)

ENV(E) i f f E = 〈Π, ACT, σ, µ〉
Π := Set o f properties

ACT := Set o f actors
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ACT ⊆ 2Π

σ : 2Π 7−→ ACT(stimulus f unction)

µ : OACT,resp 7−→ 2Π(response f unction)

and:

ACT(A) := Actor A (4.5)

ACT(A) i f f A ∈ ACT ∧ A = 〈I, O, IS, σ, µ〉
IA := Input

OA := Output

σA : rn(σE) 7−→ IA

µA : OA 7−→ OA,resp

and:

IOSYS(S) := Input−Output System (4.6)

IOSYS(S) i f f S = 〈I, O, IS, φ〉
I := Input

O := Output

IS := Internal States(can be empty)

φ : I × 2Π × 2Π ×O

An input-output system (IOSYS) can be defined independent
from sensor and motor functions but then the actor is ’disconnected’
from every kind of environment. Thus we use the term ’input-
output system’ if we talk about actors in a more abstract way and
we use the term ’actor’ for actors if we talk about actors as input-
output systems somehow embedded in some environment.1 1 Here is the environment defined by

the actor story.With these clarifications it becomes clear that the the basic inter-
face (BIntf) of an actor A in the environment E has not to be defined
with the ’internal’ inputs and outputs of an actor but by the image/
range of the environment-stimulus function rn(σE) as well as the
response-values of the actor OA,resp. Thus we have:

BInt fA,E = {x|x ∈ rn(σE)×OA,resp}

This definition shows not only (as stated above) that the basic
interface is a finite set of input-output pairs, but additionally the
observed inputs are mere estimates of inputs because the observed
stimuli from point of view of the environment are not necessarily
the inputs inside of the actor. The stimulus function of the actor in
connection with the internal states usually does modify the outside-
stimuli in specific ways.

Real Interface (RIntf) The basic interface (BInf) as logical concept has
to be distinguished from that interface which represents a ’real’ de-
vice interacting with an executive actor. The real interface (RIntf) of
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an assistive actor ’realizes’ the ’basic interface’ by providing some
sensoric appearance of an assistive actor. Thus if the executive actor
needs an input from the interface there can be visual or acoustic or
haptic or other sensoric properties which are used to convey the
input to the executive actor. As well, if the executive actor wants to
produce an output to change some properties in the assistive actor
there must be some sensor at the side of the assistive actor which
can receive some ’action’ from the executive actor. The concrete
outlook of such a real interface is the task of the ’interface design’
given a ’basic interface’.

Input-Output Systems Basic Typology

Figure 4.1: Basic Typology of Input-
Output Systems
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With the basic parameters Input (I), Output (O) as well as In-
ternal States (IS) one can derive some basic typology of input-output
systems(cf. figure 4.1).

A first case is the random case where the output of a system
will be completely random within the space of possible outputs
independent of the input. Thus with regard to the set of random
possible system-dependent outputs ORandom,SYS every output can
occur.

A second case is the fixed (deterministic) case where a subset
of the system-dependent outputs OFixed,SYS is in a static manner
associated with a certain input. This determination of a certain
subset of the system-dependent outputs represents some sort of a
bias; not the whole set is possible, but only a pre-defined subset.

The final case describes an incrementally fixed case where the
system can change its behavior during runtime OSel,SYS depending
on some kinds of rewards which can be part either of the exter-
nal input I or of some internal states ISREW . Although the set of
system-dependent outputs can change, the set of possible outputs
represents a certain subset of all the possible outputs and therefore
is nevertheless by this selection a bias which is influenced by the
rewards.

If one steps back even more and takes a look to the three types
ORandom,SYS, OFixed,SYS, OSel,SYS then one can compare these special
sets with the general set of system-dependent outputs OSYS and
the set of possible outputs offered by the actor story as the world
(W) given as OW . If one takes the possible outputs of the world
called OW as point of reference then the system dependent outputs
ORandom,SYS, OFixed,SYS, OSel,SYS, OSYS are usually true subsets of
the possible world outputs and there can be intriguing overlaps
between ORandom,SYS, OFixed,SYS, OSel,SYS. There can be cases that
the learning system with its output set OSel,SYS is weaker then
the system with a fixed output set OFixed,SYS and this in turn can
be weaker than a random system with the random output set
ORandom,SYS. Whether this is the case or not depends from many
parameters and has empirically to be checked by appropriate tests.

Learning Input-Output Systems From this it follows that the ’basic
interface (BIntf)’ is usually only a subset of the behavior function
of a learning system. This means for to ’understand a learning
input-output system’ it is not sufficient to describe the behavior
of a system only once; instead one has to describe the behavior
in different phases to detect ’possible changes’ compared to the
’past’. This corresponds to the fact, that a learning system ’learns
always’. Thus to ’predict’ the behavior of learning systems in an
environment is in no case trivial.

Another point is related to the possible reward parts of the exter-
nal inputs and/ or the internal states of an actor. Because learning
depends radically on these ’rewards’ to receive some ’bias’ to be
able to ’select’ an appropriate subset of possible behavior within a world
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one has to study these rewards within the logic and dynamics of
the actor. The main question is under which conditions a system
can approach the optimal output-space using rewards. This as-
sumes that it is possible to determine the optimal space somehow,
at least by the ’rewards’. In the physical world with biological sys-
tems the available rewards are results of some past environments.
This does not guarantee success in the future. Therefore the main
problem is to find new rewards which are more appropriate to en-
able success in future environments which are usually not completely
known during the time of decision making.

Empirically and Non-Empirically Motivated

The general definition of a learning input-output offers space for
nearly infinite many concrete instances. One possible classification
scheme could be that of empirically motivated or non-empirically
motivated models.

Empirically Motivated

Examples of empirically motivated models are some of the mod-
els which experimental psychologists have tried to develop. One
famous team of psychological motivated researchers was the team
Card, Moran and Newell working at the Paolo Alto Research Cen-
ter (PARC) starting in 1974. They published a book ’The Psychol-
ogy of Human-Computer Interaction’ where they showed how one
can develop empirical models of human actors. According to Card
et al.(1983)2 one can assume at least three sub-functions within the 2 Stuart K. Card, Thomas P. Moran,

and Allen Newell. The Psychology of
Human-Computer Interaction. Lawrence
Erlbaum Associates, Inc., Mahwah
(NJ), 1 edition, 1983

general behavior function:

φ = φperc ⊗ φcogn ⊗ φmot (4.7)

φperc := Perception (4.8)

φperc : I 7−→ (VB ∪ AB) (4.9)

VB := Visual bu f f er (4.10)

AB := Auditory bu f f er (4.11)

φcogn1 : (VB ∪ AB)×MSTM −→ MSTM (4.12)

φcogn2 : MSTM ×MLTM −→ MSTM ×MLTM (4.13)

φcogn1+2 := Cognition (4.14)

φmot : MLTM −→ O (4.15)

φmot := Motor activity (4.16)

Thus an input – visual or auditory – will be processed by the
perception function φperc into an appropriate sensory buffer VB oder
AB. The contents of the sensory buffers will then be processed by
the partial cognitive function cogn1 into the short term memory (STM),
which at the same time can give some input for this processing.
Another cognitive function cogn2 can map the contents of the
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short term memory into the long term memory (LTM) thereby using
information of the long term memory as input too. From the long
term memory the motor function can receive information to process
some output O.

According to these assumptions we have to assume the following
partitions of the internal states:

VB ∪ AB ∪MSTM ∪MLTM ⊆ IS (4.17)

The complete model can be found in the cited book.

Non-Empirically Motivated

In many cases non-empirically motivated models are sufficient.
This amounts to the task to ’invent’ a function φ which maps the
inputs from the known actor story into the outputs of the known
actor story. This can be done deterministically or non-deterministically,
i.e. in a learning fashion.

In the deterministic case one can take the empirical behavior
function (see definition 4.1) derived from the actor story ’as it is’.

In the non-deterministic case it is not enough to ’re-write’ the
empirical behavior function as the theoretical behavior function
of the actor model. To adapt to the documented changes in the
behavior of the actor one has to assume ’appropriate’ internal states
whose internal changes correspond to the observable changes in the
actor story.

GOMS Model

One old and popular strategy for non-empirically motivated mod-
els is labeled GOMS for Goals, Methods, Operators and Selection
rules3. 3 A first extensive usage of a GOMS

model can be found in Card et al.
(1983) :139ff

Stuart K. Card, Thomas P. Moran,
and Allen Newell. The Psychology of
Human-Computer Interaction. Lawrence
Erlbaum Associates, Inc., Mahwah
(NJ), 1 edition, 1983

• GOAL: A goal is something to be achieved and will be repre-
sented by some language expression.

• OPERATOR: An operator is some concrete action which can be
done.

• METHOD: A method is a composition of a goal and some opera-
tors following the goal to realize it.

• SELECTION RULE: A selection rule has an IF-THEN-ELSE
structure: IF a certain condition is fulfilled, THEN some method
will be selected, otherwise the method following the ELSE
marker will be selected.

According to the general learning function ?? a rule of a GOMS
model has the logical format:

IF I = X ∧ IS = Y THEN IS = Y′ ∧O = Z (4.18)
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Example: An Electronically Locked Door For the following demon-
stration we use the simple example of an electronically locked
door.4 4 For a description of the example see:

http://www.doeben-henisch.de/fh/

fsv/node13.html in Doeben-Henisch
(2010) .

Gerd Doeben-Henisch. Formal
Specification and Verification: Short
Introduction. Gerd Doeben-Henisch,
2010

For this actor model in the GOMS format we assume the follow-
ing formal actor story:

AS for Electronic Door Example If we start with state Q1, then it
will be followed by state Q2 if the output of the executive actor is
pushing the key with symbol A; otherwise, if the output is different,
then we will will keep state Q1. Similar in the following states: If
we are in state Q2 and the output of the user is pushing the key
with symbol B, then the user story switches to state Q3; otherwise
we are back in state Q1. Finally, if we are in state Q2 and the user
pushes the key with symbol A, then we will reach the final state Q4,
otherwise back again to state Q1.

The details of the different states are given here.

1. Start = U1 ∪ S1 ∪ Env1

U1 = {USER(U1)}
S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),
KEY(Kb),KEY(Kc),PART-OF(〈Ka, Kb, Kc〉, K1)}
Env1 = {DOOR(D1), CLOSED(D1)}
Meaning: ’U1’ is the name of a user, ’S1’ the name of a system-
interface, and ’Env1’ is the name of an environment. All three
’U1, S1, C1’ are names for subsets of properties of state Start.

2. CHANGE-AS:〈 Start,Start,push(not(Ka),K1),d(),c()〉, 〈 Start,Q2,push(Ka,K1),
d(), c(PRESSED(Ka))〉,

3. Q2 = U1 ∪ S1 ∪ Env1

U1 = {USER(U1)}
S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),
KEY(Kb),KEY(Kc),PART-OF(〈Ka, Kb, Kc〉, K1),PRESSED(Ka)}
Env1 = {DOOR(D1), CLOSED(D1)}

4. CHANGE-AS: 〈Q2, Start, push(not(Kb), K1), d(), c()〉, 〈 Q2,Q3,push(Kb,K1),
d(), c(PRESSED(Kb))〉,

5. Q3 = U1 ∪ S1 ∪ Env1

U1 = {USER(U1)}
S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),
KEY(Kb),KEY(Kc),PART-OF(〈Ka, Kb, Kc〉, K1),PRESSED(Kb)}
Env1 = {DOOR(D1), CLOSED(D1)}

6. CHANGE-AS: 〈Q3, Start, push(not(Ka), K1), d(), c()〉, 〈 Q3,Goal,push(Ka,K1),
d(CLOSED(D1)), c(PRESSED(Ka), OPEN(D1))〉

7. Goal = U1 ∪ S1 ∪ Env1

U1 = {USER(U1)}
S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),
KEY(Kb),KEY(Kc),PART-OF(〈Ka, Kb, Kc〉, K1),PRESSED(Ka)}
Env1 = {DOOR(D1), OPEN(D1)}

http://www.doeben-henisch.de/fh/fsv/node13.html
http://www.doeben-henisch.de/fh/fsv/node13.html
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For a complete representation as a graph different variants have
been realized to enable a better judgment about the Pros and Cons
of the different versions.

The graphs are constructed with the DOT-Language using a
normal editor under Linux and the KGraphViewer program based
on the graphviz package of software tools developed since 1991 by
a team at the ATT&Laboratories. For the theory see e.g. Gansner
et.al (1993) 5, and Gansner et.al. (2004) 6. For a tutorial see Gansner

5 Emden R. Gansner, Eleftherios
Koutsofios, Stephen C. North, and
Gem-Phong Vo. A technique for
drawing directed graphs. IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, 19(3):214–230, 1993

6 Emden R. Gansner, Yehuda Koren,
and Stephen North. Graph drawing
by stress majorization. In János Pach,
editor, Graph Drawing, number 3383 in
Lecture Notes in Computer Science,
pages 239 – 250, Berlin - Heidelberg.
Springer-Verlag

et.al (2015) 7. 7 Emden R. Gansner, Eleftherios
Koutsofios, and Stephen C.
North. Drawing graphs
with dot. pages 1–40, 2015. Online:
http://www.graphviz.org/pdf/dotguide.pdf

Figure 4.2: Electronic door example -
bare graph, only nodes

Figure 4.3: aai-example electronic door:
nodes and minimally labeled edges

Figure 4.4: aai example electronic door
with nodes, shortened edge-labels, and
subsets of properties

For practical reasons it seems that the last version, figure 4.6,
should be preferred: it gives implicitly all necessary informations
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Figure 4.5: aai example with a com-
plete graph (only the edge labels are
shortened)

Figure 4.6: Graph with complete start
state followed by difference states
based on labelled edges

and keeps the amount of written information low.

GOMS Actor Model

As one can see the formal description of the actor story offers no
information about the internal structures which determine the
behavior of the different users, the executive actor as well as the
assistive actor. To enhance this one has to define additional actor
models.

We will start the construction of a GOMS model for the executive
actor using the electronically locked door. For this we simplify

7 Instead of using the GOMS format for
an actor model one can use every kind
of a function, e.g. a function φ realized
with a normal programming language
like ’C/C++’, ’Java’, ’python’ etc.

the GOMS-Model format as follows: IF Input ... Internal ... THEN ...
Internal ... Out... ELSE ... Internal ... Out.... The Input can either be
some value from the set I of possible inputs or from the set IS of the
internal states of the system. In the used example are all properties
of the states a possible input or the properties of the internal states.
All these IF-THEN rules are subsumed under the goal to enter the
open door.

1. GOMS MODEL FOR USER U1

2. INPUT U1 = VB; OUTPUT U1 = MOT

3. GOAL : OPEN(D1) & DOOR(D1)

(a) IF VB=’CLOSED(D1)’ & IS=’MEM(U1,(Ka,0,Kb,0,Ka,0))’
THEN IS=’MEM(U1,(Ka,1,Kb,0,Ka,0))’ & MOT=’push(Ka,K1)’

(b) IF VB=’CLOSED(D1)’ & IS=’MEM(U1,(Ka,1,Kb,0,Ka,0))’
THEN IS=’MEM(U1,(Ka,1,Kb,1,Ka,0))’ & MOT=’push(Kb,K1)’

(c) IF VB=’CLOSED(D1)’ & IS=’MEM(U1,(Ka,1,Kb,1,Ka,0))’
THEN IS=’MEM(U1,(Ka,1,Kb,1,Ka,1))’ & MOT=’push(Ka,K1)’
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(d) IF VB=’OPEN(D1)’ & IS=’MEM(U1,(Ka,1,Kb,1,Ka,1))’ THEN
IS=’MEM(U1,(Ka,0,Kb,0,Ka,0))’ & MOT=’movesthrough(U1,D1)’

These IF-THEN-Rules follow the general behavior function
φ : I × 2IS 7−→ 2IS ×O

The system interface S1 has its own GOMS-Model.

1. GOMS MODEL FOR SYSTEM-INTERFACE S1

2. INPUT S1 = K1; OUTPUT S1 = states of the door {CLOSED,
OPEN}

3. GOAL : OPEN(D1) & DOOR(D1)

(a) IF K1 =’KEY-PRESSED(K1,Ka)’ & IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’
THEN IS=’CODE(C2,(Ka,1,Kb,0,Ka,0))’

(b) IF K1 =’KEY-PRESSED(K1,not(Ka))’ & IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’
THEN IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’

(c) IF K1 =’KEY-PRESSED(K1,Kb)’ & IS=’CODE(C2,(Ka,1,Kb,0,Ka,0))’
THEN IS=’CODE(C2,(Ka,1,Kb,1,Ka,0))’

(d) IF K1 =’KEY-PRESSED(K1,not(Kb))’ & IS=’CODE(C2,(Ka,1,Kb,0,Ka,0))’
THEN IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’

(e) IF K1 =’KEY-PRESSED(K1,Ka)’ & IS=’CODE(C2,(Ka,1,Kb,1,Ka,0))’
THEN IS=’CODE(C2,(Ka,1,Kb,1,Ka,1))’ & OUT=’OPEN(D1)’

(f) IF K1 =’KEY-PRESSED(K1,not(Ka))’ & IS=’CODE(C2,(Ka,1,Kb,1,Ka,0))’
THEN IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’

Thus a complete Process is an interaction between the actor story
(AS) and the actor models written as GOMS-Models.

Measuring Dynamic Behavior

If one assumes a ’learning actor’ then the actor story describes the
’expected behavior’ as a set of ’input-output pairs’ for every state
and an actor has to be ’trained to learn’ the ’expected sets of input-
output pairs’.

One can use therefor the defining sequence of input-output tasks
to ’measure’ the ’intelligence’ of an actor. Running a task the first
time one can use the percentage of correctly solved sub-tasks within
a certain amount of time as a ’benchmark’ indicating some measure
of ’intelligence’. (For an introduction into the topic of psychological
intelligence measures see e.g. Eysenk (2004) 8, Rost (2009) 9, Rost

8 Hans J. Eysenk. Die IQ-Bibel. Intelligenz
verstehen und messen. J.G.Cotta’sche
Buchhandlung Nachfolger GmbH,
Stuttgart, 1 edition, 2004. Englische
Originalausgabe 1998: Intelligence. A
New Look

9 Detlef H. Rost. Intelligenz. Fakten und
Mythen. Beltz Verlag, Weinheim - Basel,
1 edition, 2009

(2013) 10)

10 Detlef H. Rost. Handbuch Intelligenz.
Beltz Verlag, Weinheim - Basel, 1

edition, 2013

To measure the ’learning capacity’ of an actor one can use a task
to explore (i) how much time an actor needs to find a goal state
and (ii) how many repetitions the actor will need until the error
rate has reached some defined minimum.(The history of behavioral
Psychology provides many examples for such experiments, see
e.g. Hilgard et.al. (1979) 11 and a famous experiment with Tolman

11 Ernest R. Hilgard, Rital L. Atkinson,
and Richard C. Atkinson. Introduction to
Psychology. Harcourt Brace Jovanovich,
Inc., New York - San Diego - Chicago -
et.al., 7 edition, 1979

(1948)12 using learning curves and error rates). Another measure

12 Edward C. Tolman. Cognitive maps
in rats and men. The Psychological Re-
view, 55(4):189–208, 1948. 34th Annual
Faculty Research Lecture, delivered at
the University of California, Berkeley,
March 17, 1947. Presented also on
March 26, 1947 as one in a series of
lectures in Dynamic Psychology spon-
sored by the division of psychology of
Western Reserve University, Cleveland,
Ohio
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could be the quality of the storage capacity (memory) by first
identifying a maximum of correctness and then (iii) one measures
the duration until which the maximum correctness of the memory
has again weakened below a certain threshold of accuracy.(The
first scientist who did this in a pioneering work was the German
Psychologist Ebbinghaus (1848) 13, English translation 14) 13 Hermann Ebbinghaus. Űber das

Geda̋chtnis: Untersuchungen zur
experimentellen Psychologie. Duncker &
Humblot, Leipzig, 1 edition, 1885. URL:
http://psychclassics.yorku.ca/Tolman/Maps/maps.htm
14 Hermann Ebbinghaus. Memory:
A Contribution to Experimental
Psychology. Teachers College, Columbia
University, New York, 1 edition,
1913. Translated from the German
Edition 1885 by Henry A. Ruger
& Clara E. Bussenius 1913, URL:
http://psychclassics.yorku.ca/Ebbinghaus/index.htm

While some minimal amount of ’learning time’ is needed by all
kinds of systems – biological as well as non-biological ones – only
the non-biological systems can increase the time span for ’not-
forgetting’ much, much wider than biological systems are able to do.

Today the biggest amount of executing actors are still biological
systems represented by human persons (classified as ’homo sapi-
ens’), therefore parameters as ’learning time’, ’memory correctness’,
or ’memory forgetting time’ are important to characterize the ’dif-
ficulty’ of a task and ways to explore possible settings which make
the task difficult. From such a ’learning analysis’ one can eventually
derive some ideas for possible ’improvements’. From this follows
that the format of usability tests should be adapted to these newly
identified behavior based properties.

On account of the unobservability of the inner states (IS) of
every real system it follows that all assumptions about possible
inner states as well as about the details of the behavior function φ

represent nothing else as a hypothesis which is given in the format
of a formal model. The formal space for such hypothetical models is
infinite.



5
AS-AM Summary

The Logical Space

Figure 5.1: The actor story (AS) and
the actor models (AMs) as symbolic
representations constituting a symbolic
space

Looking back to all these new concepts and complex relation-
ships the figure 5.1 may be of some help to get the whole picture at
once.

1. The AAI experts begin their work with a problem document
delivered by some stakeholder.

2. The stakeholder usually is rooted in some part of the real world
from where he receives his inspiration for the problem and it
is his way of understanding the world and his language which
encodes the problem into a problem document DP.

3. The AAI experts analyze the problem by developing in a first
phase an actor story (AS) which includes all the circumstances
and all the properties which are intended by the stakeholder. The
actor story will be realized at least in a textual, in a mathemati-
cal, and in a pictorial mode.
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4. In a second phase they take the identified actors and develop
actor models (AM) to ’rationalize’ the behavior required by the
actor story. This will be done in a formal way.

5. Having a formal description of the actor story as well formal
descriptions of the actor models one can directly ’program’ a
real computer with these specifications. In that case the real
computers are functioning as simulators: the one simulator Σ
simulating the actor story is representing the actor story is the
world of the simulation, and the different simulators σ1, ..., σn

simulating the different actors are actors in this world. The
interaction between the different simulators is realized by message
passing.

In this picture of the AAI analysis something important is miss-
ing: all these formalizations and simulations of the actor story and
the different actor models have no defined physical appearance! All
these formalizations are represented as strings of symbols, formal
expressions, even the pictorial language in its strict form. Thus a
grounding in the real world is still missing.

Creating the Symbolic Space

Figure 5.2: Creation of the symbolic
space by AAI-experts

To speak about the structure of the symbolic space, its shape, its
structure, is of limited use as long it is not clear, how one can gen-
erate such a symbolic space within a systems engineering process
(SEP).

Here it is assumed that there exists a structured process of symbolic
space creation. This presupposes that every participating AAI expert
has a set of mental models (MMs) of his world view which represent
for the AAI expert the important properties of the kown world.(See
for this 1 and figure 3.1) It is further assumed that the AAI experts 1 Gerd Doeben-Henisch. Philosophy

of the actor. eJournal uffmm.org, pages
1–8, 2018b. ISSN 2567-6458. URL
https://www.uffmm.org/2018/03/20/

actor-actor-interaction-philosophy-of-the-actor/

have some languages in common which allows the production of a
symbolic space, which can be shared by the whole team. Because
this symbolic space is external to all participants it can reflect back

https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/
https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/
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to the different authors and thereby synchronizing the different
individual mental models. In a finite set of modifications occurring
as an iterative process evolves the symbolic space first as an actor
story (AS), then as a finite set of actor models (AMs).

Creating such a symbolic space ’by hand’, ’manually’ is possible
and should always be possible in principle, but for more advanced
symbolic spaces one needs a support by specialized SW-tools or
even – in the long run – by specialized AI programs.

The Physical Space

Figure 5.3: The symbolic space ex-
tended with simulators translated into
the physical space with physical actors
as well as physical assistive actors

To give the logical structures of the symbolic space a physical
appearance one has to translate those parts of the logical space into
real things which are necessary for the concrete work.

As you can see in figure 5.3 there are two kinds of actors which
have to be grounded in the real world of bodies: the assistive actor
Aass and the executing actor Aexec.

While the executing actor in case of human actors has not to be
built but to be recruited from possible candidates, the assistive actor
has to be built as a physical device.

Based on the actor story one can deduce general requirements
for the intended executive actor as ’task induced actor requirements
(TAR)’ which state what kinds of inputs the executive actor must
be able to process and what kinds of motor responses. From these
required inputs and outputs one can deduce a basic outline for re-
quired cognitive and emotional capabilities. With regard to available
candidates one can analyze the capabilities of a real person as actor
induced actor requirements (AAR). If the TAR are not in agreement with
the AAR then either the candidate is not capable to do the job or he
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has to be trained to gain the necessary capabilities.,
In case of the intended assistive actor there are also logical require-

ments which can be deduced from the actor story, which describe
how the assistive actor should behave. But in this case there exist
also additional human-actor based psychological requirements which
take into account what a human-actor can perceive and how a human-
actor can process perceived information to be able to respond.

It is a special job to create a physical device by obeying these
logical and psychological requirements. Until today there is no
automatic procedure known to support this.

Because there is no 1-to-1 mapping from the requirements to
the physical realization of the assistive actor and no 1-1 mapping
from the logical requirements to a real human executive actor it is
necessary to organize a series of tests with real human persons using
the real assistive actor. Only these tests of usability can reveal, how
good the intended interaction of the actors in the intended task
works.

Multiple Actor Stories

Figure 5.4: The intended actors of
an actor story (AS) are living as real
actors usually in more than one actor
story

Until now we have only looked to a single actor story (AS), that,
which just has to be created as a new one. But the intended actors
as real actors in a real world usually are living in more than one
actor story either at the same time or in different time slices, with a
different actor story in a different time slice. Nevertheless because
a real person has a physical body which needs different physical
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resources, physical transportations, physical communications and
more there are several interactions between different actor stories. Thus,
to make an actor story ’stable’ one has to include these different
kinds of interactions with accompanying actor stories from other
stakeholders.





6
Optimal Design

As the preceding section 5.3 shows, the translation of parts of
the logical (symbolical) space into the physical space induces a
real amount of fuzziness on both sides, the assistive as well as the
executive actor. Therefor one has to realize a series of tests to check
the quality of the observable real processes compared to the logical
requirement of the actor story.

Usability Measurement Procedure To approach a possible optimum
for a finite set of demonstrators one applies a set of usability mea-
surements – called ’usability test’ – in an iterative process. In a
usability test UT so far one realizes a mapping of given demonstrators
D into a set of usability values V as follows υUT : D 7−→ D × V.
A usability test includes a finite set of objective as well as subjec-
tive sub-tests. The values V of one usability test are then given as
a finite set of points in an n-dimensional space Vn. Thus after a
usability test υUT has been applied to a demonstrator one has an
ordered pair (D, V).

To find the relative best demonstrator in a finite set of candidate
demonstrators {(D1, V1), (D2, V2), ..., (Dm, Vm)} one has to define a
measure µ : 2Vn 7−→ Vn for the assumed finite many n-dimensional
values {Vn

1 , Vn
2 , ..., Vn

m} to compare these values and identify for
this set an optimal value. Thus µ(Vn

1 , Vn
2 , ..., Vn

m) computes a certain
Vn

i ∈ {Vn
1 , Vn

2 , ..., Vn
m}.

Applying this measure to the set {(D1, V1), (D2, V2), ..., (Dm, Vm)}
gives the best demonstrator of this set.

Not yet Ideally This is the procedure which is described in most
textbooks, but this procedure has a weak point: in these tests one
characterizes the test persons as the intended executive actors only
roughly, e.g. ’experienced user’ or ’normal user’ or ’beginner’,
perhaps additionally one takes into account the ’age’ and ’gender’.
But as one can infer from the preceding chapters every task has
its very specific ’profile of requirements’ condensed in the TAR
document and what is needed on the executive side is an explicit
’user profile’ as required with the AAR document. As everybody can
easily check a usability test will differ a lot if there are test persons
with greatly varying AAR profiles which have different ’distances’
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to the TAR profile. In the extreme case there is a physical assistive
device which works fine for test persons with an AAR profile ’close
to the TAR profile’, but because there haven been test persons with
an AAR profile which was ’not close to a TAR profile’ the results
are very bad.

Proposal of an Ideal Procedure Following the preceding chapters one
can infer the following proposal for an ideal test procedure to measure
the usability of a physical assistive actor device used by real human
persons mimicking the ideal executive actor.

1. Receiving an actor story AS and the TAR document from that
story.

2. Selecting a group of test candidates {T1, ..., Tn} planned to mim-
icking the intended executive actor.

3. Work out an AAR document for each of the test candidates yielding
a set of pairs {(T1, AAR1), ..., Tn, AARn)}.

4. Compute the distance of each AARi compared to the TAR and
group the test candidates according to their classified actor in-
duced actor requirements AAR into distinct AAR-classes.

5. Run a series of tests and and observe and compute the following
for each test:

(a) Taking notes of the objective behavior data.

(b) Compare the observed behavior with the expected behavior
based on the AS.

(c) Compute the error rate for each test candidate in each test.

(d) After one test give the test candidate a questionnaire asking
for the general feeling doing the test (-n - 0 - +n) and asking for
objective circumstances connected to this feeling.

6. After the completion of the defined series of tests one has to
compute the learning curve for each test person and the curve of
satisfaction based on the questionnaires.

7. One continues with another series of tests distributed in time to
compute the forgetting curve for each test person not by doing the
test but by asking to remember the different action sequences and
the test persons are writing down there memories.

With this procedure one can differentiate the different types of
test persons more precisely, one will get objective behavior data as
well as subjective judgments related to objective properties, and one
will get a picture of the dynamic learning behavior of each test person.
With these data one can dig ’deeper’ into the psycho-dynamic
of the interaction between human executive actors and physical
assistive actors.
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If these tests show clear weaknesses within the process of interac-
tion one can try to identify the ’causes’ for this weaknesses: either
(i) physical properties of the assistive actor or (ii) deficiencies on the
side of the executive actors (objectified by the AAR document) or
(iii) a bad logic in the actor story.

If the causes seem ’reasonable’ and their change could improve
the overall error rates and the satisfactions in a way which supports
the main goal (e.g. earn money with the device, (ii) improve the
quality of a service, (iii) improve some theory, ...), then one can de-
cide to improve the actor story or the actor models or the physical
device or do a better training for the executing actors.





7
After AAI-Analysis

Having completed the AAI analysis as pointed out in figure ?? one
has to continue in the systems engineering process according to
the minimal standard systems engineering process (cf. formula 1.1)
with the logical design phase δ which takes into account the whole
specified behavior with the AS, the AMs, and the TAR, here called
MSR = 〈AS, AM, TAR〉.

Different to the usual analysis phase we have at the end of the
AAI analysis phase defined actor models with a mathematical
structure which can directly be integrated in the logical design as
MSR,design as well we have complete functions which can directly be
implemented. Because these functions can be realized with every
known programming language this kind of specification can be
pre-formatted within the AAI analysis to fit the requirements of
the later implementation. Based on such a specified function the
implementation phase σ translates these ideas in a physical entity
MSR,real , written as σ : MSR,design 7−→ MSR,real .

It should be kept in mind that the implementation part of the
actor models AM is not primarily intended to be the final solution
for implementation but to enable a distributed simulation environment
including all actor models {σ1, ..., σn} and the simulator for the
whole actor story Σ serving as the environment functioning like a
’world’ in a computer game (cf. figure ??)

Because the transfer from the AAI-analysis phase into the logical
design phase as well the transfer from the logical design phase
into the implementation phase can principally not completely
be defined one has to run a validation phase υυ which compares
the behavior requirements MSR from the AAI-analysis phase with
the behavior of the real system MSR,real . The outcome will be some
percentage of agreement with the required behavior, written as

υυ : MSR ×MSR,real 7−→ [0, 1] (7.1)

Based on the simulated version of the actor story it is possible
to realize a validation of the implemented system by coupling the
implemented physical system with the simulated actor story as a
whole.





8
Looking Forward; ToDos

The text so far gives only a very limited account of the whole Actor-
Actor Interaction (AAI) paradigm within the systems engineering
process. We hope to be able to develop it further with many illus-
trating applications (case studies).

Actual known ToDos Here is a list of actual ToDos which have to be
realized to improve the test:

1. The history part 1.1 should be refined to make clear to which
extend the AAI paradigm has been prepared by different publica-
tions, and where have been the differences so far.

2. The different views part 1.2 should be enriched with more
direct comparisons with the main systems engineering positions
(especially with INCOSE).

3. The Philosophy of the AAI-Actor part 1.3 should be extended to
give all necessary ideas directly.

4. In the introducing part of the chapter Actor Story 3 one has
to explain what non-functional requirements are and it has
to be created a new section/ chapter to explain how one can
in the AAI-environment give the definition and the check for
non-functional requirements in a complete new way.

5. In the subsection of the mathematical AS 3.0.3 one has to rewrite
all the used formal languages distinguishing between the math-
ematical graph as such Lε, the static-property language LΠ

attached to the nodes, the dynamic-change language LΞ attached
to the edges and the specification language of the actor models
Lα. The domain of reference DR has to be clarified for all these
different languages.

6. It would be great finally to define also the pictorial language
Lpict 3.0.2 .

7. Another pending point is the automatic conversion of an AS into
a symbolic simulator 3.0.4 which then could be implemented on
a real machine.
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8. It would be great if we could set up a software framework where
we can run the AS-simulator Σ together with all the actor models
{σ1, ..., σn}; this enhanced with the pictorial language ...

9. It could help to automatize the generation of the TAR document
3.1 based on the AS.

10. There should be some more theory and a manual based on
Psychology which describes how to construct an AAR-document.
3.2 3.3

11. It has to be defined more clearly how one can compare AAR
documents by distances with the TAR document and how to
establish a classification based on these comparisons 6.

12. After rewriting the formal languages for AS and AM the inter-
action between an AS and the different AMs should be described
more precisely 3.4 .

13. In the chapter about AMs 4 there are many points which can be
improved:

(a) More explanations to the concepts ’model’ and ’algebraic
structure’ (better perhaps: ’theory’).

(b) Generally more examples of actor models with different
kinds of formalizations, at least one with a common program-
ming language.

(c) Providing a small algorithm to support the automatic genera-
tion of dot-based-graphs 4.3.3 out of the formal description of
an AS.

14. Give examples of real usability tests done according to the new
protocol 6 .

15. Check the proposed interface between AAI-analysis, logical
design, implementation and validation of a systems engineering
process 7 with the main mechanisms used today in systems
engineering.

Everybody is invited to share the discussion of this new paradigm
with questions, critical remarks, hints, examples, whatever helps to
clarify this paradigm. The first address to contact the project is the
eJournal: uffmm.org, ISSN 2567-6458, Email: info@uffmm.org. We
recommend as start page: https://www.uffmm.org/2017/07/27/uffmm-
restart-as-scientific-workplace/
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