...THE DESIGNER OF ANEW SYSTEM MUST NOT ONLY BE THE IMPLE-
MENTOR AND THE FIRST LARGE-SCALE USER; THE DESIGNER SHOULD
ALSO WRITE THE FIRST USER MANUAL...IF 1 HAD NOT PARTICIPATED
FULLY IN ALL THESE ACTIVITIES, LITERALLY HUNDREDS OF IMPROVE-
MENTS WOULD NEVER HAVE BEEN MADE, BECAUSE | WOULD NEVER HAVE
THOUGHT OF THEM OR PERCEIVED WHY THEY WERE IMPORTANT.

DONALD E. KNUTH

GERD DOEBEN-HENISCH, LOUWRENCE ERAS-

MUS, ZEYNEP TUNCER

ACTOR ACTOR INTER-
ACTION [AAI] WITHIN A
SYSTEMS ENGINEER-
ING PROCESS (SEP)

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

UFFMM.ORG

Copyright © 2018 Gerd Doeben-Henisch, Louwrence Erasmus, Zeynep Tuncer

PUBLISHED BY UFFMM.ORG

UFFMM.ORG

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means except for brief quotations in printed reviews, without the

prior permission of the publisher.

First printing, July 2018

Contents

Preparing the Viewpoint 15
Actor-Actor Analysis 19
Actor Story (AS) 21

Actor Model (AM) 31
AS-AM Summary 43
Optimal Design 49

After AAI-Analysis 53
Looking Forward; ToDos 55
Bibliography 57

Index 59

List of Figures

1.1

3.2
33

4.1
4.2
43
44
45

4.6

5.1

5.2
53

5.4

Engineering process with diferent kinds of actors 16

Basic Mappings between empirical reality with body as a part and
internal mental structures 22

Change event between two states 25

Change event with an embedded actor 29

Basic Typology of Input-Output Systems 34

Electronic door example - bare graph, only nodes 39
aai-example electronic door: nodes and minimally labeled edges
aai example electronic door with nodes, edge-labels, and proper-
ties 39

aai example with a complete graph (only the edge labels are short-
ened) 40

Graph with complete start state folowed by difference states based
on labelled edges 40

The actor story (AS) and the actor models (AMs) as symbolic rep-
resentations constituting a symbolic space 43

Creation of the symbolic space by AAl-experts 44

The symbolic space extended with simulators translated into the
physical space with physical actors as well as physical assistive ac-
tors 45

The intended actors of an actor story (AS) are living as real actors
usually in more than one actor story 46

39

List of Tables

Dedicated to those who gave us the prior
experience and the inspiring ideas to be

able to develop the view offered in this
book.

11

Introduction

THIS BOOK IS OUR FIRST TRIAL to bring together such diverse topics
like Human-Machine Interaction, Systems Engineering, Philosophy
of Science, and Artificial Intelligence.

THE TEXT POINTS BACK to the the paper "AAI - Actor-Actor Interac-
tion. A Philosophy of Science View" from 3.0ct.2017 and version 11
of the paper "AAI - Actor-Actor Interaction. An Example Template"
and it transforms these views in the new paradigm ’"Actor- Actor
Systems Engineering’” understood as a theory as well as a paradigm
for and infinite set of applications. In analogy to the slogan "Object-
Oriented Software Engineering (OO SWE)’ one can understand the
new acronym AASE as a systems engineering approach where the
actor-actor interactions are the base concepts for the whole engi-
neering process. Furthermore it is a clear intention to view the topic
AASE explicitly from the point of view of a theory (as understood
in Philosophy of Science) as well as from the point of view of pos-
sible applications (as understood in systems engineering). Thus
the classical term of Human-Machine Interaction (AAI) or even the
older Human-Computer Interaction (HCI) is now embedded within
the new AASE approach. The same holds for the fuzzy discipline
of Artificial Intelligence (AI) or the subset of Al called Machine
Learning (ML). Although the AASE-approach is completely in its
beginning one can already see how powerful this new conceptual
framework is.

ADDITIONALLY THERE EXISTS A LONG 'CONCEPTUAL HISTORY’
leading back to the Philosophy-of-Science studies of Doeben-
Henisch 1983 - 1989 in Munich under the guidance of Peter Hinst,
many intensive discussions between Doeben-Henisch and Erasmus
about Systems engineering since 1999, a paper written by Doeben-
Henisch and Wagner 2007 * with ongoing discussions since then,
a lecture by Doeben-Henisch about formal specification and veri-
fication in 2010 2, two papers by Erasmus and Doeben Henisch in
2011 3, about 20 regular semesters with the topic Human-Machine
Interaction by Doeben-Henisch at the Frankfurt University of Ap-
plied Sciences (Frankfurt, Germany)(unpublished) in the timespan
2005 - 2015, two regular semesters with the topic AAI together
with Tuncer in 552016 and WS2016 at the Frankfurt University of

* G. Doeben-Henisch and M. Wag-
ner. Validation within safety critical
systems engineering from a com-
putational semiotics point of view.
Proceedings of the IEEE Africonzo007
Conference, pages Pages: 1 — 7, 2007.
por: 10.1109/ AFRICON.2007.4401588

2 Gerd Doeben-Henisch. Formal
Specification and Verification: Short
Introduction. Gerd Doeben-Henisch,
2010

3 Louwrence Erasmus and Gerd
Doeben-Henisch. A theory of the
system engineering process. In ISEM
2011 International Conference. IEEE,
2011a; and Louwrence Erasmus and
Gerd Doeben-Henisch. A theory of
the system engineering management
processes. In gth IEEE AFRICON
Conference. IEEE, 2011b

14

Applied Sciences (Frankfurt, Germany) (unpublished), and two
workshops with Erasmus in summer 2016 and Spring 2017 (unpub-
lished). Additionally many discussions between Doeben-Henisch
and Idrissi about Al and AAI since 2015.

1
Preparing the Viewpoint

A CERTAIN POINT OF VIEW has to taken by the reader to understand
the following considerations. Why should one change the known
paradigm of 'Human-Machine Interaction (HMI)’ in the layout of
Actor-Actor Interaction as preferred in this text.

History: From HCI to AAI

To speak of "Actor-Actor Interaction (AAI)” instead of "Human-
Computer Interaction (HCI)’ is rooted in the course of history.
When the World War II ended several advances in technology and
software gave raise to great expectations and visions what the
future can bring mankind to improve life."

Looking to the course of events between 1945 and about 2000
one can observe a steady development of the hardware and the
software in many directions. This caused an explosion in many
variants of new applications and usages of computer. This contin-
uous challenge of how human persons can interact with this new
technology provoked a rapid development what has been called in
the beginning '"Human Computer Interaction (HCI)'. But with the
extension of the applications in nearly all areas of daily live from
workplace, factory, to education, health, arts and much more the
interaction was no longer restricted to the "traditional’ computer
but interaction happened with all kinds of devices which internally
or in the background used computer hardware and software. Thus
a ‘normal’ room, a ‘normal’ street, a 'normal’ building, a toy, some
furniture, cars, and much more turned into computerized devices
with sensors and actuators. At the same time the collaborators
of human persons were not only other human persons or certain
animals but more and more “intelligent’ machines, robots, smart
interfaces. Thus to speak of a "Thuman user” interacting with a "tech-
nical interface” was no longer appropriate. A more appropriate
language game is the new talk of “interacting actors’, which can be
sets of different groups of actors interacting in some environment
to fulfill a task. Actors are then biological systems (man as well as
animals) and non-biological systems.

* For some ’bits of history” see Doeben-
Henisch (2018)

Gerd Doeben-Henisch. From
hci to aai. some bits of history?
efJournal uffmm.org, pages 1-16,
2018a. ISSN 2567-6458. URL
https://www.uffmm.org/2018/04/19/
from-hci-to-aai-some-bits-of-history/

https://www.uffmm.org/2018/04/19/from-hci-to-aai-some-bits-of-history/
https://www.uffmm.org/2018/04/19/from-hci-to-aai-some-bits-of-history/

16 ACTOR ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

Engineering: Different Views

SYSTEMS ENGINEERING (SIMPLIFIED)

SE-MANAGER

wawaceent ()

PROBLEM ANALYSIS
DEFINTION BEHAVIOR DESIGN —1 » IMPLEMENTATION —1—» VALIDATION DEPLOYMENT

MODEL

STAKEHOLDER

AALEXPERT

AAIANALYSIS

INTENDED
EXECUTIVE
ACTOR

If one wants to deal with the development of optimal interfaces
within certain tasks for executing actors® one can distinguish
different views onto this problem (see figure 1.1).

The common work view in systems engineering is an expert (EXP)

as part of a systems engineering process (SEP) who takes a problem
description D, and does some analysis work to find an optimal
solution candidate (OSC).

One level above we have the manager (MNG) of the systems engi-
neering process, who is setting the framework for the process and
has to monitor its working.

Another upper level is the philosopher of science (POS) who is
looking onto the managers, processes, and their environments and
who delivers theoretical models to describe these processes, to simulate
and to evaluate these.

In this text the Actor-Actor Interaction (AAI) is the main focus,
embedded in a Systems Engineering Process (SEP), all embedded in a
minimal Philosophy of Science (PoS) point of view.

For this the following minimal SEP-structure is assumed3:

SEP(x) iff x=(P,S,Sep) (1.1)
Sep : P—S
Sep = aRiQUOUVAo0
« Analysis of the problem P
6 := Logical design
o Implementation of S
v = Validation
o := Deployment

Figure 1.1: Engineering process with
diferent kinds of actors

? Today still mostly human persons.

3 For the first paper of Erasmus
together with Doeben-Henisch about
this subject see

Louwrence Erasmus and Gerd
Doeben-Henisch. A theory of the
system engineering process. In ISEM
2011 International Conference. IEEE,
2011a

PREPARING THE VIEWPOINT 17

The outcome of the analysis of an AAl-expert is an optimal solu-
tion candidate (OSC) for an interface of an assisting actor embedded
in a complete behavior model Mggr given as an actor story (AS) com-
bined with possible actor models (AMs). This output provides all in-
formations needed for a following logical design. The logical design
provides the blue-print for a possible implementation of a concrete
working system whose behavior should be in agreement (checked
through a validation phase) with the behavior model provided by
the AAl-analysis.

Philosophy of the AAI-Expert

Before digging into the details of the following actor-actor inter-
action (AAI) analysis done by an AAl-expert one has to consider
the conditions under which the AAl-expert is doing his job. These
considerations are done in a separate paper called "Philosophy of

the AAI-Expert’ (see Doeben-Henisch (2018) 4). 4+ Gerd Doeben-Henisch. Philosophy
of the actor. eJournal uffmm.org, pages

o . . 1-8, 2018b. ISSN 2567-6458. URL
findings of modern biology and psychology that the ability of https://www.uffmm.org/2018/03/20/

human persons to use a set theoretical language L. to talk about actor-actor-interaction-philosophy-of-the-actor/
the experiences with the world is grounded in the cognitive ma-

The main topic in the philosophy paper is centered around the

chinery of human persons including complex processes related to
perception, memory, spatial and temporal thinking, embedding of
languages and others. Because the human brain in the body is not
directly interacting with the outside world but mediated by sensors
and actuators it is this complex cognitive machinery which con-
structs an inner model of the outside world. And it are exactly the
properties of this ‘inner model” which provide a "point of reference’
for all our thinking and talking.

One conclusion from these considerations is that the reality for
a human person is basically perceived as a stream of events, which
can be divided in distinguishable situations, called states. A state is
understood as a set of properties embedded in a three-dimensional
space. If at least one property changes a state changes. Subsets
of properties can be understood as objects, which in turn can be
subdivided into ‘actors” and 'non-actors’. Actors can ‘sense’ their
environment and they can ‘respond’. More distinctions are possible
as needed.

To understand how an AAl-expert perceives his world, generates
internal models, and how he is communicating with others, one has
to clarify these philosophical groundings.

https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/
https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/

2
Actor-Actor Analysis

After these introductory remarks we start with the Actor-Actor
analysis (AAl-analysis) within the systems engineering process.
One has to provide a problem to be solved as initial step.

Problem to be Solved

1. The problem document Dp is the result of a communication be-
tween some stakeholder (SH) and some experts, which have dis-
cussed a problem P which the stakeholder wants to be solved. In
this context it suffices to describe shortly in the introduction of
the problem document which persons have been participating
in the communication with their communication addresses for
further questions.

2. Due to the fuzziness of human communication one has to as-
sume to a certain degree a semantic gap with regard to the par-
ticipants of the communication which generated the problem
document as well as for potential readers of the problem docu-
ment.”

3. Additionally to the general problem a finite set of special con-
straints (C) can be given, which correspond to the traditional
‘non-functional requirements’. To do this in the right way one

has to describe the ‘intended meaning’ of these constraints in

a way that it is possible either to decide, whether this intended

meaning is fulfilled by the following actor story and actor mod-

els or that these constraints pointing to the follow up phases of

the systems engineering process.

Check for AAI-Analysis

Within the general analysis phase of systems engineering the AAI-
perspective constitutes a special view. This implies a check of the
occurrence of the following aspects:

1. At least one task (T) and
2. an environment (ENV) for the task and

3. an executive actor (ExecA) as the intended user.

* For an early discussion of one of
the authors about the semantic-gap
problem see Doeben-Henisch &
Wagner (2007) .

G. Doeben-Henisch and M. Wag-
ner. Validation within safety critical
systems engineering from a com-
putational semiotics point of view.
Proceedings of the IEEE Africonzo007
Conference, pages Pages: 1 — 7, 2007.
port: 10.1109/ AFRICON.2007.4401588

20 ACTOR ACTOR INTERACTION [AATI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

AAI-Analysis

The goal of the AAl-analysis is to find an optimal assistive actor

(AssA)? to support the executive Actor (ExecA)3 in his task. For this 2 Traditionally understood as the
technical interface.

. . . 3 Traditionally understood as the
analysis process whose results are evaluated for an optimal solution. human user.

to achieve one needs an iterative application of the whole AAI-

To analyze the problem P one has to dig into the problem P so
far that one is able to tell a complete story, how to understand and
later to realize the task.

It can be some work to investigate the details of such a story. The
investigation is complete if the resulting story is sound, that means
all participants agree that they understand the story and that they
accept it.

To communicate a story we assume the following main modes:
textual, pictorial, mathematical, as well as simulation. Actually it is not
clear whether one should prefer the sequence textual — pictorial —
formal — simulation or textual — formal — pictorial — simulation.
Below the first sequence is used.,

3
Actor Story (AS)

To communicate a story in the main modes textual, pictorial, math-
ematical as well as simulated one has to consider the above men-
tioned epistemological situation of the AAl-expert.

The point of view underlying the description of an actor story AS
is the so-called 3"-person view. This means that all participating
objects and actors are described from their outside. If an actor acts
and changes some property through it’s action it is not possible in
a 3rd—person view to describe the inner states and inner processes,
that enabled the actor to act and why he acts in this way. To over-
come the limits of a 3"-person view one has to construct additional
models called Actor Models (AMs). For more details have a look to
the section ??.

The relationship between the traditional ’functional requirements
(FR)" and the ’actor story’ is such, that all necessary functional
requirements have to be part of the actor story. The "non-functional
requirements (NFR)” have to be defined in their intended meaning
before the actor story and then it must be shown, how the structure
of the actor story ’satisfies’ these criteria., In this sense are the 'non-
functional requirements’ presented as ’constraints” which have
the status of ‘'meta-predicates’, which have to be designed in an
appropriate "control logic” for actor stories.

The topic of '"Non-Functional Requirements (NFRs)” as well as
"Functional Requirements (FRs)” and their relationship is a hot topic
in systems engineering and has not yet a complete solution. The
general problem is how to 'represent” the NFRs in a way, that these
can be handled in the overall system. The big advantage of the
AAGSE paradigm in this context is that the mathematical version of
the actor story provides a formal structure which allows to describe
all functional requirements (FRs) in a formal way which allows the
annotation of non-functional requirements (NFRs) easily.

The Philosophy behind the Actor-Story concept — as pointed out in
the figure 3.1 — is given in a draft paper by Doeben-Henisch (2018)

! describing the basic relationships between the empirical external * Gerd Doeben-Henisch. Philosophy
of the actor. efournal uffmm.org, pages
. ; . . 1-8, 2018b. ISSN 2567-6458. URL
and processes enabling things like concepts, memories, languages https://www.uffmm.org/2018/03/20/

with meaning etc. actor-actor-interaction-philosophy-of-the-actor/

world with the body as a part and the internal, mental, structures

From this one can derive that different modes to represent

https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/
https://www.uffmm.org/2018/03/20/actor-actor-interaction-philosophy-of-the-actor/

22 ACTOR ACTOR INTERACTION [AATI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

PRESUPPOSED HUMAN ACTOR
EMPIRICAL WORLD

WITH BODY AS

PART OF IT DAT_ONTOL

MENTAL ONTOLOGY

TIMELY
ORDER
T<

BASIC

PROPERTIES IMPLICIT
i

3D SPACE
R"3

SENSOR FOR
BODY-EXTERNAL
EVENTS

PERCEPTION

DAT_X T CONCRETE

SENSOR FOR
BODY-INTERNAL

EVENTS CLASSES

RELATIONS

SYMBOLIC STRUCTURES
LANGUAGE
L

w(e_x) IS PART OF|DAT_O|IS PART OF|DAT_1|S PART OF|
a(m_x) IS PART O IS PART OF DAT_1 15 PART OF DAT_ONTOL = o

MEANING : L <---> DAT_ONTOL

" |

e o

TH
EMPIRICAL

EXPRESSION AITRUE STATEMENT]IS GROUNDED IN A MENTAL AGREEMENT

m_x
EMPIRICAL MATTER
WITH EMPIRICAL MATTER m_x

empirical matters with symbolic expressions like a language L
have as primary point of reference the ‘mental ontology’ DAT,,;,; of
the AAI experts. While the mental ontology is assumed to be "the
same’ for all different modes of symbolic articulation?, the different
modes of articulation can express different aspects of the same
mental ontology more highlighted than in other modes of symbolic
articulation.

In the case of expressions of some "everyday language’ Ly like
German or English we have only symbols of some alphabet, con-
catenated to strings of symbols or articulated as a stream of sounds.
Thus an understanding of the intended meaning is completely
bound to the mental encoding of these expressions, eventually asso-
ciated with some other clues by body-expressions, mimics, special
contexts, and the like.

If we would use a “pictorial language’ Ly, as in a comic strip, we
would have again some strings of symbols but mostly we would
have sequences of two-dimensional drawings with the symbols
embedded. These drawings can be very similar to th perceptual
experience of spaces, objects, spatial relations, timely successes, and
more properties which somehow “directly” encode real situations.
Thus the de-coding of the symbol expressions is associated with
a strong “interpretation” of the intended situations by "world-like
pictures’. In this sense one could use such a pictorial language as
a ‘second hand ontology’ for the encoding of symbolic expressions
into their intended meaning.

But for the intended engineering of the results of an AAI anal-

E CODING OF LANGUAGE AND

INTENDED MEANING IS MENTAL

OF USED EXPRESSION e_x AND OBSERVED EMPIRICAL MATTER m_x

THE SAMENES OF MEANING BETWEEN TWO SPEAKERS A AND B HOLDS BETWEEN TRUE STATEMENTS

OF SPEAKER A AND B IF B CAN CONFIRM THE UTTERANCE OF EXPRESSION e_x IN CONNECTION

Figure 3.1: Basic Mappings between
empirical reality with body as a part
and internal mental structures

> Which is a highly idealistic assump-
tion in case of learning systems

ACTOR STORY (AS)

ysis neither the everyday language mode L nor the pictorial lan-
guage mode L ;. is sufficient. What is needed is a "formal language’
Le which can easily be used for logical proofs, for automated com-
putations, as well as for computer simulations. One good candidate
for such a formal language is a language using mathematical
graphs which are additional enriched with formal expressions for
properties and changes between states. This allows an automatic
conversion into automata which can simulate all these processes.
Additional one can apply automatic verification for selected proper-
ties, e.g. for non-functional requirements!

From this we derive the following main modes of an actor story
in this text: (i) Everyday language Lo(here English), (ii) Pictorial
language Ly, (in this version of the text not yet defined), (iii)
Formal langauge L., (iv) Converted automaton ay_ out of the
formal language, which can simulate the actor story.

The additional actor models described after the actor story can
be seen as special extensions of the actor story and have to be
included in the simulation mode. This is straightforward but has
also not yet been included in this version of the text.

Textual Actor Story (TAS)

An actor story AS in the fextual mode is a text composed by expres-
sions of some everyday language Lo — default here is English Lgy

—. This text describes as his content a sequence of distinguishable
states. Each state s — but not an end-state — is connected to at least
one other follow-up state s’ caused by the change of at least one
property p which in the follow up state s’ either is deleted or has been
newly created.

Every described state s is a set of properties which can be sub-
distinguished as objects (OBJ) which are occurring in some envi-
ronment (ENV). A special kind of objects are actors (As). Actors are
assumed to be able to sense properties of other actors as well as of
the environment. Actors are also assumed to be able to respond to
the environment without or with taking into account what happened
before.

Actors are further sub-divided into executive actors as well as
assistive actors. Assistive actors A+ are those who are expected
to support the executive actors A,y in fulfilling some task (t) (with
teT).

A task is assumed to be a sequence of states with a start state
Sstart and a goal state Sgoals where the goal-state is an end state. The
set of states connecting the start and the goal state is finite and
constitutes a path p € P. There can be more than one path leading
from the start state to the goal state. The states between the start
and the goal state are called intermediate states.

23

Every finished actor story has a least one path.3 3To turn a textual actor story into an
audio actor story (AAS) one can feed
the text into a speech-synthesis program
which delivers spoken text as output.

24 ACTOR ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

Pictorial Actor Story (PAS)

In case of an textual actor story (TAS) — as before explained — one
has a set of expressions of some common language Ly. These
expressions encode a possible meaning which is rooted in the inner
states (IS) of the participating experts. Only the communicating
experts know which meaning is encoded by the expressions.

This situation — labeled as semantic gap — can cause lots of misun-
derstandings and thereby errors and faults.

To minimize such kinds of misunderstandings it is a possible
strategy to map these intended meanings in a pictorial language
Lyict which has sufficient resemblances with the intended meaning.
Replacing the textual mode by a story written with a pictorial lan-
guage Ly, can show parts of the encoded meaning more directly.

As one can read in the section 1.3 'Philosophy of the View-Point’
(and in the figure 3.1) the world of objects for a standard user is
mapped into a spatial structure filled with properties, objects, actors
and changes. This structure gives a blue-print for the structure
of the possible meaning in an observer looking to the world with
a 3"-person view. Therefore a pictorial language can substitute
the intended meaning to some degree if the pictorial language
provides real pictures which are structurally sufficient similar to the
perceived visual structure of the observer.

To construct a pictorial actor story (PAS) one needs therefore
a mapping of the ‘content’ of the textual actor story into an n-
dimensional space embedded in a time line. Every time-depended
space is filled with objects. The objects show relations within the
space and to each other. Objects in space, the space itself, and
the changes in time are based on distinguishable properties. To
conserve a consistency between the textual and the pictorial mode
one needs a mapping between these both languages: 7 : Ly +—

Lpict'

Mathematical Actor Story (MAS)

To translate a story with spatial structures and timely changes into a
mathematical structure one can use a mathematical graph vy extended
with properties I1 and changes & for encoding.

A situation or state g € Q given as a spatial structure corresponds
in a graph -y to a vertex (also called 'node’) v, and a change { € &
corresponds to a pair of vertices (v,v’) (also called an ‘edge’ e € E).

If one maps every vertex v € V into a set of property-expressions
m € 2l with A : V +—— 2511 and every edge e € E into a set of
change-expressions Lz with € : E — 252 then a vertex in the graph
7 with the associated property-expressions can represent a state
with all its properties and an edge e followed by another vertex v’
labeled with a change-expression can represent a change from one
state to its follow-up state.

A graph v extended with properties and changes is called an
extended graph .

Thus we have the extended graph 4" given as:

v (g) iff g§=(V,ELmLyAe€)
E C VxV
A V — 2k
e : E-—2b=

SCREEN(S)
BUTTON(B1)
NOT-PRESSED(B1)

CHANGE CAUSED BY ACTION 'press'

<v,V\press(B1),d(NOT-PRESSED(B1)), c(PRESSED(B1))>

SCREEN(S)
BUTTON(B1)
PRESSED(B1)

(3.1)
(3-2)
(33)
(3-4)

The occurrence of a change is represented by two vertices v, v’

connected by an edge e as e : {v} — {v'}. The follow-up vertex v’

has at least one property-expression less as the vertex v or at least

one property-expression more. This change will be represented in

a formal change-expression € € L, containing a list of properties to

be deleted as d : {p1, p3, ...} and properties to be newly created as

C: {pz, Pa, }

The deletion-operation is shorthand for a mapping of subtracting

property-expressions like d : {s} —— s — {p1,p3,..} and the

creation-operation is shorthand for a mapping of adding property-

expressions like ¢ : {s} —— sU {py, pa,...}. Both operations

are processed in a certain order: first deletion and then addition,

change = d ® c.

These conventions define the actor story as formal mathematical

graph enhanced by formulas form properties and formal expres-

sions for changes.

Objects and Actors Every assumed object 0 € OB]J attached to a

vertex represents a sub-set of the associated properties. An actor

a € Ais a special kind of object by A C OBJ.

1. Generally it is assumed that there exists some "domain of ref-

erence’ DR which corresponds to a situation/ state of an actor

story.

ACTOR STORY (AS) 25

Figure 3.2: Change event between two

26 ACTOR ACTOR INTERACTION [AAT] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

2. For every ‘object’ in DR one can introduce a ‘name’ realized as
a string of 'small alphanumeric letters’ beginning with a ’capital
letter’. Names are a subset of terms. Examples: "Hobbes’, "Uz’,
"Moon’,

3. Mappings from distinct objects into other distinct objects which
have all to be objects of DR are called "functions’ realized as a
string of small alphanumeric letters” followed by n-many terms
enclosed in brackets. Functions are as well a subset of terms.
Examples: ‘add(3,4)", ‘push(Button1)’, ...".

4. 'Properties’ I1 are relations between objects in an assumed
’domain of reference’ DR. The properties are symbolically repre-
sented by property expressions Ly; which are realized by n-many
terms functioning as ‘arguments’ of n-ary ‘predicates’. Thus a
property-expression is a sequence of an n-ary ‘predicate’ as a
string of 'big alphanumeric letters” enriched with the "-’-sign
followed by n-many terms as arguments enclosed in brackets.
Example: "USER(U1)’, 'SCREEN(S)’, BUTTON(B1)’, 'IS-PART-
OF(B1,S)’, 'ON(push(B1))’, ...

5. As stated above there exists a mapping from states into sets of
property expressions written as A : V — 251

1. A change in the domain DR happens when at least one prop-
erty disappears or emerges. To express this symbolically one
has to assume (as stated above) that there are two formal states
v, v’ each with property expressions L, LUH/ and the property
expressions from follow-up state v’ are generated by applying
a ‘change-action’ realized as a function « € ACT to the preced-
ing state v. The change action has a 'name’ realized by a string
of ’small alphanumeric values’ followed by a ‘delete function’
named 'delete’ (or short ‘d’) and then by a ’creation function’
named 'create” (or short ’c’). Thus the change action « is a con-
catenated operation « = d() ® ¢(). The arguments of the delete-
and create-function are property expressions.

2. Example: if there is a set of property expressions LY, = {SCREEN(S), BUTTON(B1), NOT —

PRESSED(B1)} and a change action «(L{;) with the sub-functions
d(NOT — PRESSED(B1)) and ¢(PRESSED(B1)) then the result-

ing follow-up property set looks like LUH/ = {SCREEN(S), BUTTON(B1), PRESSED(B1)}

3. The complete change expression will be realized as a ‘list":
(v,v',a,d(p1, ., Pn), c(p1, ..., Pm)). This reads: a change action
with name & has been applied to state v and generates a new
state v’ by (i) copying the properties from state v to state v/, then
(ii) deletes the properties (py, ..., pn) in ¢/, and then (iii) creates
the properties (py, ..., pm) in v'. The result of applying (i) - (iii) to
the old state v generates the new state v'.

4. Thus change statements are terms derived as a subset as follows:
€ C V xV x ACT x IIN# x TIN® (with Nat as the natural
numbers including o0).4

4 The default assumption is that either
the delete or the create function has to
have at least one property argument.

ACTOR STORY (AS)

5. If there is in one state v more than one action possible than
more than one change statement is possible. This results in more
than one edge leading from state v to n-many follow-up states

/ /
L2 o

6. Additional to the names of possible objects we assume a special
operator 'not(n)” applied to a name 'n’. The meaning of the
operator is, that in this case not the name 'n’ is valid, but the
"absence’ of the object signified by the name n’. This is important
because otherwise in case of many alternative options one has to
enumerate all alternatives to an object named 'n’.

Correspondence between mathematical and pictorial modes To keep the
consistency between a mathematical and a pictorial actor story one
needs a mapping from the pictorial actor story into the mathemati-
cal actor story and vice versa, mp.m : Lpict <— Lyatn-

Simulated Actor Story (SAS)

A simulated actor story (SAS) corresponds to a given extended graph

7" by mapping the extended graph into an extended automaton a*.
The usual definition of a finite automaton is as follows: (Q,I,F,%, A)

with

1. Q as a finite set of states
2. I C Q as the set of initial states

. F C Q as the set of final states

[SY)

4. X as a finite input alphabet

. A CQ x XZ* x Q as the set of transitions

Ul

If one replaces/ substitutes the states by vertices, the input expres-
sions by change-expressions and the transitions by edges then one gets:
(V,IF,Ly, E) with

1. V as a finite set of states

2. I C V as the set of initial states

3. F C V as the set of final states

4. Ly as a finite set of input expressions

5. E C V x Ly x V as the set of transitions

Finally one extends the structure of the automaton by the set
of property-expressions Ly as follows: (V,LF, Ly,Ln, E, A) with
AV — 2o,

With this definition one has an extended automaton a™ as an au-
tomaton who being in state v recognizes a change-expression € € Ly
and generates as follow-up state v’ that state, which is constructed

27

28 ACTOR ACTOR INTERACTION [AAT] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

out of state v by the encoded deletions and/ or creations of proper-
ties given as property-expressions from L. All state-transitions of
the automaton a™ from a start-state to a goal-state are called a run
p of the automaton. The set of all possible runs of the automaton is
called the execution graph 7exec of the automaton a™ or Yexec(a™).
Thus the simulation of an actor story corresponds to a certain run
p of that automaton a* which can be generated out of a mathemati-
cal actor story by simple replacement of the variables in the graph

7t

Task Induced Actor Requirements (TAR)

Working out an actor story in the before mentioned different modes
gives an outline of when and what participating actors should do in
order to realize a planned task.

But there is a difference in saying what an actor should do and
in stating which kinds of properties an actor needs to be able to show
this required behavior. The set of required properties of an actor is
called here the required profile of the actor A RProf,. Because the
required profile is depending from the required task, the required
profile is not a fixed value.

In the general case there are at least two different kinds of actors:
(i) the executing actor A.yec and (ii) the assistive actor A,gs;s. In this
text we limit the analysis to the case where executing actors are
humans and assistive actors machines.

Actor Induced Actor Requirements (AAR)

Because the required profile RProf.q, of an executive actor realiz-
ing a task described in an actor story can be of a great variety one
has always to examine whether the available executing actor Aexec
with its available profile RProf ., is either in a sufficient agreement
with the required profile or not, ¢ : RPr0 frequ X RProfay0: — [0,1].
If there is a significant dis-similarity between the required and
the available profile then one has to improve the available executive
actor to approach the required profile in a finite amount of time
X ¢ Agvail,exec X RPT0frequ —— Apequexec- If such an improvement
is not possible then the planned task cannot be realized with the
available executing actors.

Interface-Requirements and Interface-Design

If the available executing actors have an available profile which is
in sufficient agreement with the required profile then one has to
analyze the interaction between the executing and the assistive actor
in more detail.

Logically the assistive actor shall assist the executing actor in
realizing the required task as good as possible.

From this follows that the executing actor has to be able to
perceive all necessary properties in a given situation, has to process
these perceptions, and has to react appropriately.

If one calls the sum of all possible perceptions and reactions the
interface of the executing actor Intf ey, and similarly the sum of all
possible perceptions and reactions of the assistive actor the interface
of the assistive actor Intf 4 4es,then the interface of the assistive actor
should be optimized with regard to the executing actor.

To be able to know more clearly how the interface of the assistive
actor Int f,ss should look like that the executive actor can optimally
perceive and react to the assistive interface one has to have suffi-
cient knowledge about how the executive actor internally processes
its perceptions and computes its reactions. This knowledge is not
provided by the actor story but calls for an additional model called
actor model.

Actor Model and Actor Story

While one can describe in an actor story (AS) possible changes seen
from a 3"-person view one can not describe why such changes
happen. To overcome these limits one has to construct additional
models which describe the internal states of an actor which can
explain why a certain behavior occurs.

VISUAL N _
PERCEPTION

@ : PERCEPTION ---> MOTOR-ACTION

IMOTOR ACTION
U CHANGE CAUSED BY ACTION 'press'

<v,vpress(B1),d(NOT-PRESSED(B1)), c((PRESSED(B1))>

SCREEN(S)
BUTTON(B1)
PRESSED(B1)

The general idea of this interaction between actor story and actor
model can be seen in figure 3.3.

1. In a simple actor story with only two states v, v’ we have an
actor called "USER(U1)” which has "visual perception” and which
can act with ‘'motor activities’.

2. Therefore the actor can "see” properties like 'SCREEN’, '‘BUT-
TON’, and '"NOT-PRESSED’. Based on its "behavior function” ®

ACTOR STORY (AS)

Figure 3.3: Change event with an
embedded actor

29

30 ACTOR ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

the actor can compute a possible output as a motor-action, de-
scribed as an event expression (v, v’, press(BUTTON(B1)), d(not —
pressed(B1)),C : (pressed(B1))).

3. This results in a change leading to v’. The actor U1 is left out in
v/, also it is still part of /.

4
Actor Model (AM)

Seen from the actor story the processing of the task requires that an
actor can sense all necessary aspects of the task processing as well as
he can respond as needed. Besides this one expects that the actor is
able to process the input information (I) in a way that the actor is able
to generate the right Output (O). One can break down the required
behavior to a series of necessary inputs I for the actor followed by
necessary responses O of the actor . This results in a series of input-
output pairs pairs {(i,0),-- -, (i,0)} defining implicitly a required
empirical behavior function:

¢ = {(i0),---, (i,0)} (4.1)

Because any such empirical behavior function is finite and based
on single, individual events, it is difficult to use this empirical finite
function as the function of an explicit model. What one needs is an
explicit general theoretical behavior function like:

¢ : I—O0O (4.2)

Although an empirical behavior function ¢, is not a full behavior
function, one can use such an empirical function as a heuristic
guide to construct a more general theoretical function as part of a
complete hypothetical model of the actor.

It is an interesting task, to elaborate a hypothetical model of the
internal processes of an actor which defines thetheoretical behavior
function ¢. To do this broadly with all details is beyond the scope of
this text. Instead we will work out a first basic model which can be
understood as a kind of a template for theoretical behavior functions,
which can be extended further in the future.

The task of modeling a possible actor is twofold: first (i) one
has to define a complete formal model of a possible structure and
it’s dynamic, second (ii) it must be possible to predict the behavior
of the model in a way that it is possible to observe and measure
this behavior. If the observable behavior of the model is including
the empirical behavior function ¢,, then the hypothetical model is
empirical sound in a weak sense.

32 ACTOR ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

$o S ¢ (4-3)

We understand here a model as a mere collection of rules, while
an algebraic structure is an extension of a model by including ad-
ditional sets as well as axioms. But we use the term ‘'model” here
equivalently to the term ’algebraic structure’.

Actor as Input-Output System

To enable a transparent interaction between actor and environment
it will be assumed that an actor is generally an input-output system
(IOSYS) , that means that an actor has (i) inputs (I) from the envi-
ronment (here the actor story), which are translated by some kind
of a ‘sensoric system’ generating inputs (I) for the receiving actor as
well as (ii) outputs (O) from the actor which can cause changes in
the environment. The sum of all inputs I and outputs O defines the
basic interface (BIntf) of an input-output system S in an environment
E.

To define this more explicitly we will define the following terms:
Environment (E), Input-Output system (IOSYS) as well as Actor (A).
As Interface between the actor and the environment we have also
the Basic Interface (BIntf).

The actors (ACT) are understood as input-output systems
(IOSYS).

It is difficult to describe formally the interaction between an
environment (E) and an actor (A). The environment offers existing
properties which can change from time to time. The possible “effect’
of these properties and their changes depend on the built-in sensor
functions of the actor. Thus the stimulus-function ¢ of the environ-
ment can map some subset of properties of the environment onto
some actor, but which effect these mapped properties will have
as internal input (I) in the actor depends from the actor-specific
sensor functions 4. Thus we have a chain 0% : 2' — ACT and
then 0y : rn(og) — I4. The same is true for the backward chain
from the outputs of an actor to the environment: An actor A has
generated internally some outputs O4 which are first translated
by its motor function p 4 into some external properties of the actor
A, which in turn are then translated by the response function of
the environment y into some effects represented as deletion of ex-
isting properties 2/~ as well as of creation of new properties 2'*:
#a:Op > Opresp and then pi: rn(py) — 21—y oIt

Thus we get a hierarchical embedding of structures:

ENV(E) := Environment E (4-4)
ENV(E) iff E=(II,ACT,o,u)
IT := Setof properties

ACT := Setof actors

ACT C 2H
o 2 ACT(stimulus function)
woot OaCTresp — 2 (response function)
and:
ACT(A) := Actor A (4-5)
ACT(A) iff A€ ACTAA=(I,0,IS,o,u)
Ip = Input
Oa = Output
oa : ru(op) — I
pa 04— Oppesp
and:
I0SYS(S) := Input — Output System (4.6)
I0SYS(S) iff S=(I,0,IS,¢)
I = Input
O = Output
IS := Internal States(can be empty)
¢ Ix2"x2'x0

An input-output system (IOSYS) can be defined independent
from sensor and motor functions but then the actor is ‘disconnected’
from every kind of environment. Thus we use the term ‘input-
output system’ if we talk about actors in a more abstract way and
we use the term "actor” for actors if we talk about actors as input-
output systems somehow embedded in some environment.*

With these clarifications it becomes clear that the the basic inter-
face (BIntf) of an actor A in the environment E has not to be defined
with the ‘internal” inputs and outputs of an actor but by the image/
range of the environment-stimulus function rn(cg) as well as the
response-values of the actor Oy sesp- Thus we have:

BIntfar =

This definition shows not only (as stated above) that the basic

{x|x € T’I’Z(UE) X OA,resp}

interface is a finite set of input-output pairs, but additionally the
observed inputs are mere estimates of inputs because the observed
stimuli from point of view of the environment are not necessarily
the inputs inside of the actor. The stimulus function of the actor in
connection with the internal states usually does modify the outside-
stimuli in specific ways.

Real Interface (RIntf) The basic interface (Blnf) as logical concept has
to be distinguished from that interface which represents a ‘real” de-
vice interacting with an executive actor. The real interface (RIntf) of

ACTOR MODEL (AM) 33

* Here is the environment defined by
the actor story.

34 ACTOR ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

an assistive actor 'realizes’ the ‘basic interface’ by providing some
sensoric appearance of an assistive actor. Thus if the executive actor
needs an input from the interface there can be visual or acoustic or
haptic or other sensoric properties which are used to convey the
input to the executive actor. As well, if the executive actor wants to
produce an output to change some properties in the assistive actor
there must be some sensor at the side of the assistive actor which
can receive some ‘action’ from the executive actor. The concrete
outlook of such a real interface is the task of the “interface design’
given a ‘basic interface’.

Input-Output Systems Basic Typology

IF (1uIS) THEN (Random(O))

NO DETERMINED SUB-SPACE

IF (1 uIS) THEN (Fixed(O))

DETERMINC ED SUBSPACE
BIASED

' IS_OBJ_PART
IS_REW_PART

OBJ-PART REW-PART

IF (I_OBJ uI_REW u IS_OB] u IS_REW)
THEN (IS u BestOf(O))

APPROACHING AN INCREMENTALLY-FIXED SUBSPACE BY
EXTERNAL AND/ OR INTERNAL REWARD

Figure 4.1: Basic Typology of Input-
Output Systems

ACTOR MODEL (AM)

With the basic parameters Input (I), Output (O) as well as In-
ternal States (IS) one can derive some basic typology of input-output
systems(cf. figure 4.1).

A first case is the random case where the output of a system
will be completely random within the space of possible outputs
independent of the input. Thus with regard to the set of random
possible system-dependent outputs Og,p40m sys €very output can
occur.

A second case is the fixed (deterministic) case where a subset
of the system-dependent outputs Ofjy.4 sys is in a static manner
associated with a certain input. This determination of a certain
subset of the system-dependent outputs represents some sort of a
bias; not the whole set is possible, but only a pre-defined subset.

The final case describes an incrementally fixed case where the
system can change its behavior during runtime Og, sys depending
on some kinds of rewards which can be part either of the exter-
nal input I or of some internal states ISgrw. Although the set of
system-dependent outputs can change, the set of possible outputs
represents a certain subset of all the possible outputs and therefore
is nevertheless by this selection a bias which is influenced by the
rewards.

If one steps back even more and takes a look to the three types
ORandom,sys» OFixed sYs, Osel sys then one can compare these special
sets with the general set of system-dependent outputs Ogys and
the set of possible outputs offered by the actor story as the world
(W) given as Oy. If one takes the possible outputs of the world
called Oy as point of reference then the system dependent outputs
ORandom,sys, OFixed,sYss Osel,sys, Osys are usually true subsets of
the possible world outputs and there can be intriguing overlaps
between ORrgndom,sys, OFived,sys, Osel sys- There can be cases that
the learning system with its output set Og,; 5ys is weaker then
the system with a fixed output set Of;y,4 sys and this in turn can
be weaker than a random system with the random output set
ORandom sys- Whether this is the case or not depends from many
parameters and has empirically to be checked by appropriate tests.

Learning Input-Output Systems From this it follows that the "basic
interface (BIntf)” is usually only a subset of the behavior function
of a learning system. This means for to ‘'understand a learning
input-output system’ it is not sufficient to describe the behavior
of a system only once; instead one has to describe the behavior
in different phases to detect ‘possible changes’ compared to the
"past’. This corresponds to the fact, that a learning system ‘learns
always’. Thus to "predict’ the behavior of learning systems in an
environment is in no case trivial.

Another point is related to the possible reward parts of the exter-
nal inputs and/ or the internal states of an actor. Because learning
depends radically on these 'rewards’ to receive some ’bias’ to be

able to "select’ an appropriate subset of possible behavior within a world

35

36 ACTOR ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

one has to study these rewards within the logic and dynamics of
the actor. The main question is under which conditions a system
can approach the optimal output-space using rewards. This as-
sumes that it is possible to determine the optimal space somehow,
at least by the 'rewards’. In the physical world with biological sys-
tems the available rewards are results of some past environments.
This does not guarantee success in the future. Therefore the main
problem is to find new rewards which are more appropriate to en-
able success in future environments which are usually not completely
known during the time of decision making.

Empirically and Non-Empirically Motivated

The general definition of a learning input-output offers space for
nearly infinite many concrete instances. One possible classification
scheme could be that of empirically motivated or non-empirically
motivated models.

Empirically Motivated

Examples of empirically motivated models are some of the mod-
els which experimental psychologists have tried to develop. One
famous team of psychological motivated researchers was the team
Card, Moran and Newell working at the Paolo Alto Research Cen-
ter (PARC) starting in 1974. They published a book "The Psychol-
ogy of Human-Computer Interaction” where they showed how one
can develop empirical models of human actors. According to Card
et al.(1983)? one can assume at least three sub-functions within the
general behavior function:

¢ = Pperc @ Peogn @ Pmot (4.7)

¢perc = Perception (4-8)
Pperc : 1+— (VBUAB) (4-9)
VB := Visual buffer (4.10)

AB := Auditory buffer (4.11)
Pcogmt + (VBUAB) X Mgt — Mstm (4.12)
Peognz + Mstm X Mpry — Mstm X Mirm (4.13)
$eogni+2 = Cognition (4.14)
$mot * Mrrm — O (4.15)
¢mot = Motor activity (4.16)

Thus an input — visual or auditory — will be processed by the
perception function ¢perc into an appropriate sensory buffer VB oder
AB. The contents of the sensory buffers will then be processed by
the partial cognitive function cogny into the short term memory (STM),
which at the same time can give some input for this processing.
Another cognitive function cogn, can map the contents of the

2Stuart K. Card, Thomas P. Moran,
and Allen Newell. The Psychology of
Human-Computer Interaction. Lawrence
Erlbaum Associates, Inc., Mahwah
(NJ), 1 edition, 1983

ACTOR MODEL (AM)

short term memory into the long term memory (LTM) thereby using
information of the long term memory as input too. From the long
term memory the motor function can receive information to process
some output O.

According to these assumptions we have to assume the following
partitions of the internal states:

VBUABU Mgry UMty C IS (4.17)

The complete model can be found in the cited book.

Non-Empirically Motivated

In many cases non-empirically motivated models are sufficient.
This amounts to the task to ‘invent” a function ¢ which maps the
inputs from the known actor story into the outputs of the known
actor story. This can be done deterministically or non-deterministically,
i.e. in a learning fashion.

In the deterministic case one can take the empirical behavior
function (see definition 4.1) derived from the actor story as it is’.

In the non-deterministic case it is not enough to 're-write’ the
empirical behavior function as the theoretical behavior function
of the actor model. To adapt to the documented changes in the
behavior of the actor one has to assume "appropriate’ internal states
whose internal changes correspond to the observable changes in the
actor story.

GOMS Model

One old and popular strategy for non-empirically motivated mod-
els is labeled GOMS for Goals, Methods, Operators and Selection

rules3. 3 A first extensive usage of a GOMS
model can be found in Card et al.

* GOAL: A goal is something to be achieved and will be repre- (1983) :139ff

. Stuart K. Card, Thomas P. Moran,
sented by some language expression.

* OPERATOR: An operator is some concrete action which can be Erlbaum Associates, Inc., Mahwah

done. (N]), 1 edition, 1983

¢ METHOD: A method is a composition of a goal and some opera-
tors following the goal to realize it.

e SELECTION RULE: A selection rule has an IF-THEN-ELSE
structure: IF a certain condition is fulfilled, THEN some method
will be selected, otherwise the method following the ELSE
marker will be selected.

According to the general learning function ?? a rule of a GOMS
model has the logical format:

IFI=XAIS=Y THEN IS=Y AO=2Z (4.18)

37

and Allen Newell. The Psychology of
Human-Computer Interaction. Lawrence

38 ACTOR ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

Example: An Electronically Locked Door For the following demon-
stration we use the simple example of an electronically locked

door.4 4 For a description of the example see:
http://www.doeben-henisch.de/fh/
fsv/nodel3.html in Doeben-Henisch
ing formal actor story: (2010) .

Gerd Doeben-Henisch. Formal
Specification and Verification: Short

]) . . Introduction. Gerd Doeben-Henisch,
will be followed by state Qz2 if the output of the executive actor is 2010

For this actor model in the GOMS format we assume the follow-

AS for Electronic Door Example If we start with state Q1, then it

pushing the key with symbol A; otherwise, if the output is different,
then we will will keep state Q1. Similar in the following states: If
we are in state Q2 and the output of the user is pushing the key
with symbol B, then the user story switches to state Q3; otherwise
we are back in state Q1. Finally, if we are in state Q2 and the user
pushes the key with symbol A, then we will reach the final state Qg,
otherwise back again to state Q1.

The details of the different states are given here.

1. Start = U1 U S1 U Env1
U1 = {USER(U1)}
S1 = {SYSTEMINTEF(S1), KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),
KEY(Kb),KEY (Kc),PART-OF({Ka, Kb, Kc), K1)}
Envi = {DOOR(D1), CLOSED(D1)}
Meaning: ‘U1’ is the name of a user, ‘S1” the name of a system-
interface, and ‘Env1’ is the name of an environment. All three
U1, S1, C1” are names for subsets of properties of state Start.

2. CHANGE-AS:(Start,Start,push(not(Ka),K1),d(),c()), (Start,Q2,push(Ka K1),
d(), «(PRESSED(Ka))),

3. Q2=U1 U S1 U Env1
U1 = {USER(U1)}
S1 = {SYSTEMINTEF(S1), KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),
KEY(Kb),KEY(Kc), PART-OF(({Ka, Kb, Kc), K1),PRESSED(Ka)}
Envi = {DOOR(D1), CLOSED(D1)}

4. CHANGE-AS: (Q2, Start, push(not(Kb),K1),d(),c()), { Q2,Q3,push(Kb,Kz1),
d(), «(PRESSED(KD))),

5. Q3 =U1 US1 U Env:
U1 = {USER(U1)}
S1 = {SYSTEMINTEF(S1), KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),
KEY(Kb),KEY(Kc),PART-OF((Ka, Kb, Kc), K1),PRESSED(Kb)}
Envi = {DOOR(D1), CLOSED(D1)}

6. CHANGE-AS: (Q3, Start, push(not(Ka),K1),d(),c()), { Q3,Goal,push(Ka K1),
d(CLOSED(D1)), «(PRESSED(Ka), OPEN(D1)))

7. Goal = U1 U S1 U Env1
U1 = {USER(U1)}
S1 = {SYSTEMINTEF(S1), KEYPAD(K1), PART-OF(K1, S1), KEY(Ka),
KEY(Kb),KEY(Kc), PART-OF((Ka, Kb, Kc), K1),PRESSED(Ka)}
Envi = {DOOR(D1), OPEN(D1)}

http://www.doeben-henisch.de/fh/fsv/node13.html
http://www.doeben-henisch.de/fh/fsv/node13.html

For a complete representation as a graph different variants have
been realized to enable a better judgment about the Pros and Cons
of the different versions.

The graphs are constructed with the DOT-Language using a
normal editor under Linux and the KGraphViewer program based
on the graphviz package of software tools developed since 1991 by
a team at the ATT&Laboratories. For the theory see e.g. Gansner
et.al (1993) 5, and Gansner et.al. (2004) ©. For a tutorial see Gansner
et.al (2015) 7.

i
L

@ Apush(not(Ka) K1)

ush(Ka K1) push(not(Kb),K1) \
\
push(not(Ka) K1)

push(Kb Kl)
\

3

@i

push(Ka,K1)

Goal

push(not(Ka),K1)

(push(Ka,Kl) Tpush(not(Kb),Kl)
AN

push(Kb,K1)
N\

push(not(Ka),K1)

Q3 = {U1, s1, E1}
push(Ka,K1)

Goal = {U1, S1, E1}

For practical reasons it seems that the last version, figure 4.6,
should be preferred: it gives implicitly all necessary informations

Koot St DRE AR, 39

Gem-Phong Vo. A technique for
drawing directed graphs. IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, 19(3):214—230, 1993

S Emden R. Gansner, Yehuda Koren,
and Stephen North. Graph drawing
by stress majorization. In Janos Pach,
editor, Graph Drawing, number 3383 in
Lecture Notes in Computer Science,
pages 239 — 250, Berlin - Heidelberg.
Springer-Verlag

7 Emden R. Gansner, Eleftherios
Koutsofios, and Stephen C.
North. Drawin;

FiﬁHrg &2k Elect 0§1c door E)Snllﬁle -

Rass: BIRRRE e ﬁa%lzesorg /pdf/dotguide.pdf

Figure 4.3: aai-example electronic door:
nodes and minimally labeled edges

Figure 4.4: aai example electronic door
with nodes, shortened edge-labels, and
subsets of properties

40 ACTOR ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP) AN ACTOR

CENTERED APPROACH TO PROBLEM SOLVING VERSION 4.JULY 2018

- T
Start = {U1={ USER(U1) } T
S1={SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1,51), KEY(Ka), KEY(Kb),KEY(Kc),PART-OF(<Ka, Kb, Kc>, K1) })> push(not(Ka),K1)
. E1={ DOOR(D1), CLOSED(D1) }} _—
e I

/ \

\) \

Q2 = { +PRESSED(Ka)} push(not(Ka),K1)

o |

\ /

N\ pustkok1) /

— . ’\
< Q3= {-PRESSED(Ka), +PRESSED(Kb) }
. R

lpush(Ka K1)

< Gonl— PRESSED(KD), +PRESSED(Ka) 4OPENDY) >

and keeps the amount of written information low