...THE ABILITY OF "MATTER’ TO ENABLE A BRAIN WITH A CONSCIOUS-
NESS, WHICH CAN CONSTRUCT A'THEORY OF A WHOLE UNIVERSE’ IS AN
OUTSTANDING PHENOMENON. TO BE ACOMPLETE THEORY THE THEORY-
GENERATING BRAIN AND ITS THEORY ITSELF SHOULD BE PART OF THE
"THEORY OF A WHOLE UNIVERSE’. BUT THIS IS BY PRINCIPAL REASONS
NOT POSSIBLE (GOEDEL 1931, HAWKING 2002 '). THE ACTOR-ACTOR
INTERACTION PARADIGM IN THIS BOOK DOES INCLUDE THE THEORY PRO-
DUCER IN THE THEORY, BUT ...

GERD DOEBEN-HENISCH

"Kurt Goedel. Uber formal
unentscheidbare Sétze der
Principia Mathematica und
verwandter Systeme, i. Monat-
shefte fuer Mathematik und
Physik, 38:173-98, 1931; and
Stephen Hawking. Goédel and
the end of physics, 2002. URL
http://www.hawking.org.uk/
godel-and-the-end-of-physics.
html

http://www.hawking.org.uk/godel-and-the-end-of-physics.html
http://www.hawking.org.uk/godel-and-the-end-of-physics.html
http://www.hawking.org.uk/godel-and-the-end-of-physics.html

GERD DOEBEN-HENISCH, LOUWRENCE ERAS-

MUS

ACTOR ACTOR INTER-
ACTION [AAI] WITHIN
SYSTEMS ENGINEER-
ING (SE)

NN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SSSSSSSSSSSSSSSSSSSS

UFFMM.ORG

Copyright © 2018 Gerd Doeben-Henisch, Louwrence Erasmus
PUBLISHED BY UFFMM.ORG
UFFMM.ORG

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means except for brief quotations in printed reviews, without the prior permission of the publisher.

First printing, August 2018

10

11

Contents

Preface 11

Introduction 13

Actor-Actor Interaction Analysis
Actor Story (AS) 19

AS as Text, Comic, Graph 25
Actor Model (AM) 37
Simulation 51

Algorithmic Verification 55
Physical Design 57
Usability Testing 59
AS-AM Philosophy 63

Looking Forward 69

17

Appendix: Actor Story Example 71
Bibliography 75

Index 79

List of Figures

1.1 Engineering process with different kinds of actors 14

3.1 Domain of reference as a field of interconnected states 20
3.2 Translating the individual world views into three different languages 22

4.1 Simple pictorial actor story associated with the ‘open door TAS’ 27

4.2 Informal example of a word-to-picture lexicon as starting point for a map-
ping from TAS into PAS 27

4.3 Example of a picture-to-math mapping for properties and objects 34

5.1 Change event with an embedded actor 37

5.2 Basic Typology of Input-Output Systems 41

5.3 Electronic door example - bare graph, only nodes 46

5.4 aai-example electronic door: nodes and minimally labeled edges 46

5.5 aai example electronic door with nodes, edge-labels, and properties 46

5.6 aai example with a complete graph (only the edge labels are shortened)

5.7 Graph with complete start state folowed by difference states based on la-
belled edges 47

6.1 Creation of the symbolic space by AAl-experts 51

10.1The actor story (AS) and the actor models (AMs) as symbolic representa-
tions constituting a symbolic space 64

10.2Creation of the symbolic space by AAl-experts 65

10.3The symbolic space extended with simulators translated into the physical
space with physical actors as well as physical assistive actors 66

10.4The intended actors of an actor story (AS) are living as real actors usually
in more than one actor story 67

11.1Vision of a solution for the problem of a stakeholder cooperating with com-
mon models in a productive way 71

46

Dedicated to those who gave us the prior
experience and the inspiring ideas to be
able to develop the view offered in this

book.

Preface

AAl, SE, Al, Philosophy This book is our first trial to bring together such
diverse topics as 'Human-Machine Interaction (HMI), Systems Engineering
(SE), Artificial Intelligence (Al), and Philosophy of Science (PoS) in one co-
herent framework called Actor-Actor Interaction within systems Engineering
(AAI-SE) .

Overview of the book The book starts with an introduction presenting all
key ideas and how they will form, step by step, a big picture. Then you can
dig into each of the topics with more details and with more examples, com-
mented by historical backgrounds and actual discussions in the community.
At the end of the book you will find first case studies illustrating how the new
framework can be applied to real-world problems. With the final index of key
terms you will be able to find the passages in the book where these terms
are used.

About the web site After the publication of this book the accompanying
website https://www.uffmm.org/ of the book will offer additional material
for the community.

Acknowledgements This book has a long 'conceptual history’ leading back
to the Philosophy-of-Science studies of Doeben-Henisch 1983 - 1989 in
Munich under the guidance of Peter Hinst2, many intensive discussions
between Doeben-Henisch and Erasmus about Systems engineering since
1999, a paper written by Doeben-Henisch and Wagner 2007 2 with ongoing
discussions since then, a lecture by Doeben-Henisch about formal specifica-
tion and verification in 2010 4, two papers by Erasmus and Doeben Henisch
in 2011 5, more than 22 regular semesters with the topic Human-Machine In-
teraction by Doeben-Henisch at the Frankfurt University of Applied Sciences
(Frankfurt, Germany)(unpublished) in the timespan 2005 - 2018, two regular
semesters with the topic AAI together with Tuncer in SS2016 and WS2016
at the Frankfurt University of Applied Sciences (Frankfurt, Germany) (unpub-
lished), and two workshops with Erasmus in summer 2016 and Spring 2017
(unpublished). Additionally discussions between Doeben-Henisch and ldrissi
about Al and AAI since 2015.

2 He died 10.May 2018.

3 G. Doeben-Henisch and M. Wagner. Valida-
tion within safety critical systems engineer-
ing from a computational semiotics point of
view. Proceedings of the IEEE Africon2007
Conference, pages Pages: 1 — 7, 2007. DOI:
10.1109/AFRICON.2007.4401588

“ Gerd Doeben-Henisch. Formal Specifi-
cation and Verification: Short Introduction.
Gerd Doeben-Henisch, 2010

5 Louwrence Erasmus and Gerd Doeben-
Henisch. A theory of the system engineering
process. In 9th IEEE AFRICON Conference.
IEEE, 2011a; and Louwrence Erasmus

and Gerd Doeben-Henisch. A theory

of the system engineering management
processes. In ISEM 2011 International
Conference. ISEM, 2011b. Conference 2011,
September 21-23, Stellenbosch, South
Africa

https://www.uffmm.org/

1
Introduction

THE TERM ’ACTOR-ACTOR INTERACTION (AAI)’ as used in the title of
the book is not yet very common. Better known is the term '"HMI" (Human-
Machine Interaction) which again points back to the term '"HCI' (Human-
Computer Interaction). Looking to the course of events between 1945 and
about 2000 one can observe a steady development of the hardware and the
software in many directions.

One can observe an explosion of new applications and usages of com-
puter. This caused a continuous challenge of how human persons can
interact with this new technology which has been called in the beginning "Hu-
man Computer Interaction (HCI)’. But with the extension of the applications
in nearly all areas of daily live from workplace, factory, to education, health,
arts and much more the interaction was no longer restricted to the ’tradi-
tional’ computer but interaction happened with all kinds of devices which
internally or in the background used computer hardware and software. Thus
a’'normal’ room, a 'normal’ street, a 'normal’ building, a toy, some furniture,
cars, and much more turned into a computerized device with sensors and
actuators. At the same time the collaborators of human persons altered
to ’intelligent’ machines, robots, and smart interfaces. Thus to speak of a
’human user’ interacting with a ’technical interface’ seems no longer to be
appropriate. A more appropriate language game is the new talk of ’inter-
acting actors’, which can be sets of different groups of actors interacting in
some environment to fulfill a task. Actors are then today biological systems
(man as well as animals) and non-biological systems. Therefor we decided
to talk instead of Human-Machine Interaction (HMI) now of 'Actor-Actor
Interaction (AAI)’.

THE TERM 'SYSTEMS ENGINEERING (SE)’ is well known in the area of
engineering,? but not necessarily in connection with the new Actor-Actor-
Interaction paradigm. Our motivation to combine the AAl-view with the
Systems Engineering view was stimulated by the question whether there
exists a framework for AAl analysis which provides all the parameters which
an AAl analysis needs.

In systems engineering (cf. figure 1.1) it is common to assume an expert
as part of a systems engineering process who takes a problem description
Dp from a stakeholder, and does some analysis-work to find an optimal
solution candidate for the problem. Content of this analysis is the task which

! For a first introduction see the two human-
computer interaction handbooks from 2003
and 2008, and here especially the first
chapters dealing explicitly with the history
of HCI (cf. Richard W.Pew (2003) , which
is citing several papers and books with
additional historical investigations (cf. p.2),
and Jonathan Grudin (2008) . Another
source is the "HCI Bibliography: Human-
Computer Interaction Resources’ (see:
http://www.hcibib.org/), which has a
rich historical section too (see: http://
www.hcibib.org/hci-sites/history).
Richard W. Pew. Introduction. Evolution of
human-computer interaction: From memex
to bluetooth and beyond. In J.A. Jacko and
A. Sears, editors, The Human-Computer
Interaction Handbook. Fundamentals,
Evolving Technologies, and emerging
Applications. 1 edition, 2003; and Jonathan
Grudin. A Moving Target: The Evolution of
HCI. In A. Sears and J.A. Jacko, editors, The
Human-Computer Interaction Handbook.
Fundamentals, Evolving Technologies, and
emerging Applications. 2 edition, 2008

2 For a first introduction cf. INCOSE (2015)

INCOSE. SYSTEMS ENGINEERING
HANDBOOK. A GUIDE FOR SYSTEM
LIFE CYCLE PROCESSES AND ACTIV-
ITIES. John Wiley & Sons, Inc, Hoboken,
New Jersey, 4 edition, 2015

http://www.hcibib.org/
http://www.hcibib.org/hci-sites/history
http://www.hcibib.org/hci-sites/history

14 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH
TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 14.AUGUST 2018

has to be solved as well as the different kinds of actors, which are involved
in this task. Therefore the term Actor-Actor Interaction analysis.

Figure 1.1: Engineering process with

diferent kinds of actors
SYSTEMS ENGINEERING (SIMPLIFIED)

SE-MANAGER

wawacement ()

PROBLEM ANALYSIS
DEFINTION BEHAVIOR DESIGN —1 » IMPLEMENTATION —1—» VALIDATION DEPLOYMENT

@ MODEL

STAKEHOLDER AALEXPERT

AAIANALYSIS

INTENDED INTENDED
EXECUTIVE ASSISTIVE
ACTOR

V

One level above the expert doing the analysis we have the manager
of the systems engineering process, who is setting the framework for the
process and who has to monitor its working.

Another upper level is the philosopher of science who is looking onto the
managers, processes, and their environments and who delivers theoretical
models to describe these processes, to simulate and to evaluate these.

In this text the Actor-Actor Interaction (AAl) analysis is the subject matter
of the expert doing the AAl-analysis work.

FOR THE ACTOR-ACTOR INTERACTION (AAI) ANALYSIS AS PART OF A
SYSTEMS ENGINEERING PROCESS (SEP) the following highly idealized

structure is assumed.S. 3 for the historical motivation of this ap-
proach see the before mentioned papers
from Erasmus, Doeben-Henisch, and

AAIA(x) iff Wagner. (1.1)
x = (A, D, Dp, Daar, Msr, Mo, My, Mpiutf, Mp 5, 6)

A := Setof actors
D := Setof documents
Dp := Setof problem documents
Mgr = Set of behavior models
My, = Setof simulator models
M, = Setof algorithmic verification models
Mpintg = Setof real interfaces
Mzk)lntf := Set of optimized real inter faces
b = aQPRKITRYRo0
« : AxDr+—— Dp

B : A X D x Dp — Mgy

INTRODUCTION 15

c : AXDxXMggr+— My

v : AXDXMgg+— M,

Y ¢+ AXDXMggrXDaar — Mputs

w : AXDXMsgXDaar X Mpputf — Mpj,s

This description hides many details but provides enough information to
locate the AAI analysis within a systems engineering process.

Thus an actor-actor interaction analysis assumes a set of actors A
(stakeholders, experts, ...) and some knowledge represented in documents
D which then will be mapped by a process called « into a problem doc-
ument Dp which contains besides different informations non-functional
requirements too. As language used for the generation of the problem
document an everyday language L is assumed.

Again, actors, knowledge documents as well as the problem document
will then be mapped with a process called 8 into a behavior model Mggr. A
behavior model will include an actor story (AS) as well as (optionally) many
actor models (AMs). The actor story represents all necessary functional
requirements (FR) of the problem and it can include a set of non-functional
requirements (NFR) distributed throughout the whole actor story. Thus we
have Mgsg = AS U AM. The actor story will be presented in multiple modes.
First in a textual mode written in some everyday language L. This textual
mode will then be translated into two different modes: in a mathematical
mode with language L. and into a pictorial mode with a pictorial language
Lyict- The pictorial mode can be used as an artificial model of meaning for
the mathematical mode. One needs some mapping (used as a ’lexicon’)
between an actor story AS ;. in pictorial mode and an acor story ASe in
mathematical mode.

Based on the mathematical mode of an actor story AS. one can convert
the actor story AS. with an algorithm into an automaton M, which can be
run on an appropriate computer as a simulation. The combination of this
automaton M, with an appropriate computer we call a simulator model M, .
The whole process preparing a behavior model Mg as a simulator model
is called 0.

Another helpful process is the process named v. It translates a behavior
model Mg with the aid of a temporal logic language Lt and an appropri-
ate algorithm a into a algorithmic verification model M,,, which can compute
the occurrence or non-occurrence of a certain property in the space of possi-
ble states of the behavior model. This capability of deciding the occurrence
or non-occurrence of certain properties is especially helpful in the case
of non-functional requirements. Because non-functional requirements are
usually defined by decidable properties attached in a distributed manner to
a behavior model such a automatic verification process can check exactly
these distributed properties.

To test the usability of the behavior model one has to translate the logical
concept of the assistive actors serving as interfaces into a physical appear-
ance of the assistive actors and during this translation in a process called y
one has to use knowledge from the actor-actor induced requirements (AAR)
as well as knowledge from Psychology to design a physical appearance of

16 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH
TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 14.AUGUST 2018

the assistive actors MDIntf which can be tested by real users functioning as
executive actors.

Finally, to get real data from real users for a usability test one has to
arrange an experimental setting whereby a real user — corresponding to
the assumed AAR profiles — is challenged to do the required task(s) of the
problem. This behavior is kept in a protocol. After this objective part of the
test the user is invited for a small questionnaire to write down his judgments
regarding his feelings during the test as well as the circumstances of his
feelings. Observation protocols and questionnaires of a set of n test-persons
(n = {5 - 9}) will then be evaluated. After this evaluation the developer team
can consider some possible improvements, and — if improvements have
been realized — the tests can be repeated with new test-persons. This whole
procedure of (testing - improvements) can be repeated several times; at
least three times. How many repetitions are finally ‘optimal’ is actually an
open question. It depends to a high degree from the parameter measuring
the learning capacity of the test persons. How often should one test a
test-person and in which timely distance between each test? The whole
evaluation process with all possible repetitions is called the w-process.

PHILOSOPHY OF THE AAI-EXPERT The 'Philosophy of the AAI-Expert’ is
centering around the findings of modern Biology and Psychology. Its aim is
to explain why a human expert is able to use a formal language, here the set
theoretical language L, to talk about his experiences of the empirical world.
What Biology and Psychology are telling us is that the communication of the
experts is grounded in their cognitive machinery embedded in their brains.
Because the human brain in the body is not directly interacting with the
outside world but mediated by sensors and actuators the brain constructs
an inner model of the outside world. And it are exactly the properties of this
‘inner model’ which provide a 'point of reference’ for all our thinking and
talking. For more details see chapter 10 'AS and AM Philosophy’.

One conclusion from these considerations is that the reality for a human
person is basically given as a stream of neural events, partially translated
into phenomena of the consciousness, which can be divided in distinguish-
able situations, called states. A state is understood as a set of properties
embedded in a three-dimensional space. If at least one property changes a
state changes. Subsets of properties can be understood as objects, which
in turn can be subdivided into 'actors’ and 'non-actors’. Actors can 'sense’
their environment and they can respond’. More distinctions are possible as
needed.

This, to understand how an AAl-expert perceives his world, generates
internal models, and how he is communicating with others, this is the subject
for a philosophical grounding of the following AAI analysis theory.

2
Actor-Actor Interaction Analysis

In the following text we describe the actor-actor interaction analysis —
short: AAl analysis — by following the schema 1.1 from the introduction. On
account of the inherent complexity of some of these themes we dedicate for
these complex topics complete chapters.

Problem Document

According to the schema 1.1 the first sub-process is given by the process
'‘w: A x D +—— Dp’. This process generates a problem document Dp. This
is the result of a communication process between some stakeholders (SH)
and some experts (EXP) who represent different kinds of actors A. The
original problem P, which a stakeholder wants to be solved, is assumed to
be described in some introductory document D.

Due to the fuzziness of human communication one has to assume to
a certain degree a semantic gap with regard to the participants of the
communication which generated the problem document as well as for
potential readers of the problem document.’

Additionally to the problem described in the problem document Dp a
finite set of special constraints (C) can be given in this document too, which
correspond to the traditional 'non-functional requirements (NFR)'. Non-
functional requirements are those which describe properties of a whole
process, which can not be recognized by an individual, isolated property
alone. Examples are 'safety’, ’security’, 'cost efficiency’, ’barrier freeness’,
‘competitive with regard to a certain market’, ‘reliability’, etc. To apply such
non-functional requirements one has to define a set of operational criteria
which all-together represent a non-functional requirement. This set of
operational criteria must be associated with that process — called 'actor
story (AS) (see below) —, which realizes the intended problem. If the criteria
are all ’satisfied’ then the non-functional requirement is fulfilled, otherwise
not.

Check for AAl-Analysis

The problem given in a systems engineering process must not necessarily
be appropriate for an AAl analysis. Therefore it makes sense to do some
test in advance whether the problem in a problem document Dp is fitting to

' For an early discussion of one of the
authors about the semantic-gap problem
see Doeben-Henisch & Wagner (2007) .
G. Doeben-Henisch and M. Wag-
ner. Validation within safety critical
systems engineering from a computa-
tional semiotics point of view. Proceed-
ings of the IEEE Africon2007 Confer-
ence, pages Pages: 1 —7,2007. DOI:
10.1109/AFRICON.2007.4401588

18 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH
TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 14.AUGUST 2018

an AAIl analysis. Such a test of the problem in a problem document checks
for the occurrence of the following properties:

1. Does the problem include at least one task (T) to be realized to reach a
solution?

2. Does the problem include an environment (ENV) for the task?

3. Does the problem include at least one executive actor (ExecA) as the
intended user, which shall use some technology as an assistive actor
(AssisA) — often called interface — to run the task?

If all three question will be answered affirmatively then the problem can
be analyzed within an AAIl analysis.

Behavior Model

Following the schema 1.1 further we meet the next sub-process called beta
B : Ax D x Dp — Mgg. This process generates a behavior model
Mg which includes all information which is necessary to realize the task(s)
necessary for the realization of the intended problem.

Looking deeper into the structure of the behavior model one meets a
rather complex conceptual machinery for which we will dedicate individual
chapters.

1. The first chapter called actor story (AS) describes a process rooted
in a series of connected states which together represent — like a story
— the necessary situations which have to be run through to reach the
characterized goal states of the process. The actor story represents
all necessary functional requirements (FR) of the problem and it can
include a set of non-functional requirements (NFR) distributed throughout
the whole actor story. The actor story will be presented in multiple
modes. First in a textual mode written in some everyday language L.
This textual mode will then be translated into two different modes: in a
mathematical mode with language L. and into a pictorial mode with a
pictorial language Lpict. The pictorial mode can be used as an artificial
model of meaning for the mathematical mode. One needs some mapping
(used as a 'lexicon’) between an actor story AS ;. in pictorial mode and
an acor story AS. in mathematical mode.

2. The second chapter describes — optionally — actor models (AM). These
are models of behavior of actors which are part of the actor story. An
actor model characterizes the overt behavior of an actor by the construc-
tion of an explicit behavior function rooted in the internal states (IS) of an
actor. The concept of the actor model allows the introduction of the topic
of artificial intelligence (Al) dealing with that subset of actor models which
represent intelligent behavior as well as learning behavior. ’Intelligence’
and 'learning’ are two independent properties!

3
Actor Story (AS)

First Concepts

How IT STARTS: As described in the chapter 2 *AAl analysis’ the starting
point for an AAl analysis is a problem document Dp which describes in

a first way which kind of a problem a stakeholder wants to be solved. As
identifying criteria whether the problem at hand is appropriate for an AAl
analysis are mentioned the existence of at least one task, an associated
environment, and at least one assistive and executive actor.

FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS : The actor story
represents all necessary functional requirements (FR). For non-functional
requirement (NFR) see chapter 7 'Algorithmic Verification’.

3RD PERSON VIEW: The point of view underlying the description of an actor
story AS is the so-called 3rd-person view. This means that all participating
objects and actors are described from their outside. If an actor acts and
changes some property through it's action it is not possible in a 3“’l—person
view to describe the inner states and inner processes, that enabled the
actor to act and why he acts in this way. An inner state corresponds to what
often is called the 1%-person view. To include this additional perspective and
thereby to overcome the limits of a 3"-person view one has to construct
additional models called Acfor Models (AMs) as described in the the chapter
5.

BEHAVIOR MODEL: Following this setting this chapter is dedicated to the
construction of a behavior model Mgg which is assumed to consist of an
actor story (AS) as well as — optionally — actor models (AMs). Actor models
are discussed in chapter 5.

Actor Story, Domain of Reference

The concept of the actor story (AS) is inspired by the fact that every task
can be understood as a sequence of situations — here also called states —
which are connected by events which cause some change in a given state.
It is assumed that there is at least one start state and at least one goal state
which represents the ’solution’ of the task.

20 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 14.AUGUST 2018

A state representing some situation is understood as a set of properties,
which either can be verified in a real given situation or which are candidates
to be able to become verified in a real situation. The last case is typical for
properties in a state sequence which describes a possible sequence of
some conceivable future. State descriptions which are considered as being
not decidable in a real situation are not accepted as possible states.

Subsets of properties in a state can be understood as objects. Special
kinds of objects are actors which are input-output systems (IOSYS) which
can perceive some properties of the state they are in as possible inputs (1)
as well they are able to produce some output (O) which can be an event
which causes some change with regard to the properties of the state.

All these mentioned terms like ’task’, 'state’, event’, ’actor’ and the
like constitute what usually is called the domain of reference DRef This
domain of reference is located in the internal states of an actor, which in
turn are located in the consciousness of a person as part of the brain. The
consciousness is closely related with remembering or thinking. Another
common way of speaking in this context is to speak of mental models, which
are present in our thinking and which we use to understand the world.

P POTENTIAL ~

ASSUMED PR DOMAIN OF REFERENCE RN

REAL N
WORLD OF OTHER PR N
EXTERNAL BODIES , \

ACTUAL (= CONSCIOUS)
DOMAIN OF REFERENCE

SELECTED
DOMAIN OF REFERENCE
BY INTENTION AND

INTERPRETATION

ASSUMED

REAL
WORLD OF = SYMBOLIC EXPRESSION

OWN BRAIN

Thus the so-called ‘domain of reference’ DR¢f is a key concept in the
construction of an actor model. As figure 3.1 shows the actual conscious-
ness DRef presents only a subset of a nearly infinite field of potential
references DRef % And every symbolic expression e € L, with a learned
interpretation T selects by this interpretation a learned subset of the con-
sciousness as the actual intended meaning of the used expression e, written
as

1 . L,— DRS (3.1)
In the reverse order, if one has some ’intention’ ¢ which shall be communi-

cated, then the mapping has the format:

T DRfxi— L,

Figure 3.1: Domain of reference as a field
of interconnected states

ACTOR STORY (AS)

This domain of reference is embedded in the working of the brain which
(i) maps some properties of an assumed outside world of other bodies
into internal brain states which can become ‘conscious’ as well (i) maps
some properties of the brain itself (e.9. memory contents) into the 'con-
scious states’. Moreover (iii) manages the brain different kinds of expression

systems (like TAS, PAS, and MAS)! as well as (iv) interpretation relations ' See next chapter.

between the expression systems and the potential domain of reference. In
special cases can the expression systems themselves being part of the do-
main of reference but in the 'normal’ case they are part of an interpretation
relation T/ where some intention 1 has selected some subset of the actual
domain of reference to be mapped by the interpretation function .

Cognitive Structure of an AAI-Expert

The conceptual framework so far induces minimal assumptions about the
properties of an AAl expert doing all this work. Thus we have (in a simplified
structure):

EXP(x) iff x=(B,C,MDR t,v71, L, Q) (3.2)

B := Brain
C := Consciousness;C C B
M Memory; M C B
Lo = Somelanguage
Q = QC{x|xe€Ly}
DRef .= Domain of reference
DRf C BuCUM
v : DRf 0
1 . QO+~ DR

The t-function represents different kinds of mappings depending from
a set of expressions from languages L,. Below you can see examples of
different languages like Lo, Lyrop, Ly, Lpict,

The main message here is that if two different AAl experts a and b want
to communicate and they share the expressions of a certain language
Lomgga then they have no direct access to the meaning structure of the other
expert. Thus they have to develop and exercise certain conventions how to
secure that they are using the same meaning when they are using the same
expressions.

Coordination by Communication

Assuming the internal (cognitive) structure of an AAl expert as described
before in the 'TEXPERT’ definition 3.2 one can infer that a brain a, which
wants to coordinate its contents with some other brain b has to enable some
kind of communication which allows a continuous encoding of its internal

21

22 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH
TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 14.AUGUST 2018

MATERATICA Figure 3.2: Translating the individual world

st views into three different languages

REAL WORLD

TEXTUAL PICTORIAL
3] PROPERTY 'USER' USER(U1) CLOSED(Door)
USER STANDS OBJECT 'UT' BEFORE(UY, Door)

BEFORE THE OBJECT 'Kp' KEYPAD(Kp)
CLOSED DOOR. OBJECT 'Door’

PROPERTY 'CLOSED'

<51,52, enters_key(U1.K1,Kp),
;J‘SfEl: ENTERS OPERATION 'enters_key(U1,K1,Kp)' d:{CLOSED(Door)}, c:(OPEN(Door)}>

S2

USER(U1) OPEN(Door)

5
DOOR OPENS. BEFORE(U1, Door)
RELATION 'BEFORE(U1,Door)' KEYPAD(Kp)

14
EVERYDAY LANGUAGE
Lo PROPERTY LANGUAGE CHANGE LANGUAGE
L_prop Lx
PICTORIAL LANGUAGE
L_pict

states into the expressions of some language L., and simultaneously a
decoding of these expressions into the internal states of brain b.

For such communications the homo sapiens population has developed
since many thousand years primary, everyday languages L which use
primarily sounds Ly s,4 (enhanced by mimics, gestures, etc.), which later
have been mapped into written symbols L 1, too. Thus there exists an
internal mapping between both modes: sndSymb : Losug — Lo,symb
and symbSnd : Lo symp — Losna- These mappings are not really 1-to-
1, because the utterance situation can not completely be resolved in the
stream of sounds and even less into a stream of written symbols. Therefore
a re-mapping from the written symbols into the utterance situation is only
possible in a reducing way; especially it is difficult or even impossible to
re-map written symbols clearly and completely back into the internal states
of the source of the communication.

From these restricted re-mappings it follows that an everyday-language
communication includes always some fuzziness which urges the partici-
pants to re-check as often as possible whether their understanding based on
these communications is in a sufficient agreement.

Dealing with this 'natural fuzziness’ from the point of engineering it be-
came clear that it could be helpful to use different types of languages — in
this text called different modes — which show different ways of encoding-
decoding. As you can see in the figure 3.2 three modes are favored: the
usual everyday language mode LO,symb as basic or standard mode; a picto-
rial mode L,;.; as an additional mode, as well a mathematical mode L.
From the point of encoding-decoding it is possible to use the pictorial and
the mathematical mode as 'complementary to each other’: the pictorial
mode describes in restricted sense the '"domain of reference’ for the mathe-
matical mode. To use the pictorial mode as an artificial model of meaning for
the mathematical mode one needs some mapping (e.g. in a simple version
as a ’lexicon’) between an actor story ASPict in pictorial mode and an actor
story AS,,;;, in mathematical mode. In case of the everyday language the
domain of reference is only given in the inner states of the brain, which to
some extend can be correlated with properties of the body world. In case of
the mathematical mode there are three languages combined: (i) a language
of graphs Lmth,gmph, a language of properties Lmth/pmp, and a language of

changes Lmth,x-2 2 Later in this book it will be shown that
the mathematical language L, can be

The ’mathematical language’ L,,,;;, can easily be used for logical proofs,
enhanced by even more languages.

for automated computations, as well as for computer simulations. The lan-
guage of mathematical graphs additional enriched with formal expressions
for properties and changes between states allows an automatic conversion
into automata which can simulate all these processes.? Additionally one can
apply automatic verification for selected properties, e.g. for non-functional
requirements.*

The additional actor models described after the actor story are a special

extension of the actor story and have to be included in the simulation
mode.®

ACTOR STORY (AS)

3 For simulation see chapter 6.

4 For automatic verification see chapter 7.

5 For actor models see chapter 5.

23

4
AS as Text, Comic, Graph

This chapter describes in more detail the three main modes of an actor
story.

Textual Actor Story (TAS)

For an actor story AS in the textual mode — here called ’textual actor story
(TAS) — the AAI experts are assumed to have — according to the definition
of an EXPERT in 3.2 — a cognitive structure where the general language
L, is substituted by an everyday language L. The default language here is
English Ley:

EXPi(x) iff x=(B,C,M,DR 1,1} Lo, TAS) (4.1)

B := Brain
C := Consciousness;C C B
M Memory; M C B
Ly := Everydaylanguage
TAS := A text written in everyday language
DRef .= Domain of reference
pRf c BuCuM
Tt 1 DR x Lo— TAS
7.} . TAS+—— DR/

Thus the ’textual’ mapping function Ty translates internal conscious
states constituting the domain of reference with the aid of a set of expres-
sions Ly into some (symbolic) TAS-expressions and the inverse textual
meaning function Tt;tl maps in reverse order symbolic TAS-expressions
back to the domain of reference.

TAS-Example: Open Door
* +++++ Begin of example ++++

» Name: Open Door

« Start: A person A stands before a closed door. Besides the door there is
a numeric keypad.

26 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH
TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 14.AUGUST 2018

» Entering Key: The person A enters a key NNN into the keypad. GOTO
state named 'Goal’. ELSE GOTO state named ’"Start’.

» Goal: The door is open.

* +++++ End of example ++++

Pictorial Actor Story (PAS)

The notorious semantic gap problem associated with the encoding of
meaning into a textual actor story can be reduced to some extend by using
a pictorial actor story as well. Mapping the intended meaning in a pictorial
actor story, which has sufficient resemblances with the intended meaning, it
is possible to show parts of the encoded meaning more directly. Therefore
a pictorial actor story can substitute the intended meaning to some degree
if the pictorial language provides pictures which are structurally sufficient
similar to the perceived visual structure of the observer.

EXPpict(x) iff x=(B,CM, DRef/ Tpicts T,}gﬂ Lypict, PAS) (4.2)

B := Brain
C := Consciousness;C C B
M = Memory; M CB
Lyict := Pictorial language
PAS := A story written in pictorial language
DRef .= Domain of reference
DRef C BUCUM
Ty + DR x Ly — PAS
Ty o PAS+— DX

Because the intended meaning as part of the domain of reference,
which shall be encoded is — like in the case of the textual actor story —
partially rooted in the inner states of the experts one can represent only
the textual and the pictorial part of the mapping directly. Nevertheless if
the pictorial part of the encoding has indeed sufficient similarities with the
presupposed intended meaning then the pictorial part can enhance the
understanding between different experts and can thereby reduce possible
misunderstandings.’ 't is desirable to start a series of psycho-

logical experiments comparing the degree
of understanding using (i) only textual mode,

(ii) only pictorial mode, as well as (iii) a

PAS Example: Open Door

The figure 4.1 shows an example of possible simple pictorial actor story. parallel.

This PAS uses the same 'meaning’ as in the before mentioned case of a
textual actor story. As one can (possibly) see there exist a strong resem-
blance between the PAS and the ’imaginations’ which are caused by the
reading of the textual version. This pushes the motivation to construct gen-
erally a pictorial-textual mapping called a picture-text lexicon (PTLex). In the
follow-up chapter about simulation such a picture-text lexicon could enhance

combination of textual and pictorial mode in

the formal symbol-based simulations in a way which makes it far better
‘understandable’ for a human user than without such a picture dimension.
Figure 4.2 shows a simple example of a picture-text lexicon, here in the

reverse order text-to-picture.

DOOR CLOSED <— DOOR OPEN <—
KEYPAD <— 123
\’q 456
789
o
PERSON
>Z< Ei
123
enter_key
56
e

78 9

In this figure 4.2 the mapping from TAS to PAS as follows (internal to the

expert) the following rules:

state
object U properties

relation

rr e

action

Mathematical Actor Story (MAS)

In the case of the mathematical actor story (MAS) we have a slightly more
complex mapping. Generally it would be possible to rewrite the structure

used before as follows:

EXPmth(x) lff X = <B/ G M, DRef/ Tmths Tn;tlh, Lmth/ MAS> (4.7)

B := Brain

X BEFORE Y

shape U text

single picture frame

shapes in neighbourship U text

state and followup states

AS AS TEXT, COMIC, GRAPH 27

Figure 4.1: Simple pictorial actor story
associated with the "'open door TAS’

Figure 4.2: Informal example of a word-
to-picture lexicon as starting point for a
mapping from TAS into PAS

28 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH
TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 14.AUGUST 2018

C := Consciousness;C C B
M := Memory; M C B
Ly = Mathematical language
MAS := A story written with a mathematical language
DRef = Domain of reference
pRf ¢ BucuMm
Tun @ DR X Ly — MAS
T4+ MAS+— DR

But the mathematical actor story (MAS) as such has a complex structure
which is given in the following definition of an extended graph:

v (8) iff §=(V.EILEA\e) (4.8)
V1= wvertices
E = ‘edges
E C VxV
I = 2bwo, Property expressions
& = change expressions
A v —2!
€ E—E&E

A mathematical actor story (MAS) is then to be understood as an ele-
ment of the set of extended graphs:

MAS € {x|]y"(x)} (4.9)

Property Language

The set of properties I1 is a subset of expressions defined by the property
language L,,mp. One can describe the property language mep as follows:

1. Expressions used as names for possible objects in the domain of ref-
erence DRef are written as strings of symbols from the ASCII-Alphabet
starting with a capital letter like 'A’, 'B’, ... followed by small letters like 'a’,
b’ ... mixed with ‘digits’ like '0’, ’1’,’2’, ... or a 'dash’ like ’-’. If there exists
a corresponding object in DRef then it holds that the name is sound or
has a meaning.

2. Expressions used as n-ary operations with n-many names as arguments
refer to the domain of reference DR¢f and are written as strings of
symbols from the ASCII-Alphabet starting with a lower letter like 'a’, 'b’
... followed by more lower case letters or by capital letters like 'A’, 'B’,

... mixed with ‘digits’ like ’0’, ’1’, ’2’, ... or a 'dash’ like *-. If there exists
corresponding objects in DXef then it holds that the operation is sound

or has a meaning. Usually operations require two states (q,q’) where
q’ is a successor state of state q and there is at least one property in q’
different from the set of properties in q.

3. Aname is also called an atomic term (AT). An operator with names as
arguments is called a complex term (CT). Atomic as well as complex
terms are called terms (TRM).

4. Expressions used as predicates (PRED) are written as strings of sym-
bols from the ASCII-Alphabet containing capital letters like 'A’, 'B’, ... ,
but can include 'dashes’ like '-’. Predicates with names (atomic terms)
as arguments are here called Properties (PROP) or property statements
which can be valid in the domain of reference, also called being sound
or being true. If they are not valid in the domain of reference then they
are called not sound or not true, which is used equivalently to being
false. Predicates which have only one name as argument are also called
features (FEAT) or attributes (ATTR), those with more than one name as
argument are called relations (REL).

5. Predicate expressions which are preceded by a negator symbol ’—’ are
called negated statements (NST). If the predicate statement following the
negator sign is called ’true’ in DRef then the negated statement is called
‘false’ in DR¢f | and ’true’ otherwise.

PREDICATES AND COMPLEX TERMS: Different to usual conventions in the
usage of predicate-logic related languages? predicates and complex terms
will here be used as properties although complex terms can not become
true while predicates can. Statements with predicates can be decided
directly as ‘true’ or 'not true’, while the complex terms are in the domain of
reference represented by pairs of succeeding states (q,q’). From this follows
that a complex term as an operation is associated with a distributed process
where a state q does indicate the occurrence of a complex term wich serves
as a ‘'forcast’ for a change, which becomes ’public’ in a follow-up state which
is showing the ’effect’ of the operation. Such a pair of states is represented
in a graph by an edge which is labeled with a change statement 'citing’ the
triggering operation.

Knowing this one can define the set of property-expressions IT as
follows:

II C {x|PROP(x)VCT(x)} (4.10)

Example: When in a state q an actor U1 keys in a code K into a keypad
Kp — expressed as 'enterKey(U1,K,Kp)’ — then this causes a follow-up
state q’ with a defined effect. The connecting edge has attached a change-
statement (see below).

Change Language

In the context of an actor story there are basically different states in some
successive order. A follow-up state q’ to a preceding state g has at least
one property different to the preceding state. Whether this different property

AS AS TEXT, COMIC, GRAPH 29

2¢.f. Nilsson (1998), Russell/ Norvig
(2010)

Nils J. Nilsson, editor. Artificial Intelligence.
Morgan Kaufmann, Menlo Park, 1998; and
Stuart Russel and Peter Norvig. Artificial
Intelligence. A Modern Approach. Universe
Books, 3 edition, 2010

30 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH

TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 14.AUGUST 2018

is either a new property or a disappearing property depends either on an
action which succeeds or depends on a some event which occurs.
An event is something like a ’rain that begins’, 'the sunshine happens’, or

a person decided to ‘act’ in some way, e.g. to ‘open a door’, to ‘enter a num-

ber in a keypad’ etc. Such events have usually some effect which changes
properties. For the construction of the story this makes an interesting differ-
ence. To describe the change-potential of a state one can introduce a set
of change-statements which only state, which kinds of events can occur. If
they do not occur nothing will change, if they occur then a new state will be
generated with this event as a new property. Is an event introduced, then
this event can succeed by causing some effect or the event will not succeed;
this will change nothing and the story returns to an earlier state before this
event occurred.’

If an event is introduced in a new state and the event will succeed than
the effects are described either by properties which will be deleted in the
successive state or which will be created newly.

Thus we have two kinds of change-statements:

= =
OCCUR{ {(Qx Q') x{occurs'} x d{..} x c{'CT'}},...}
-OCCUR{ {(Q x Q) x {!—occurs'} x d{..} x c{}},...}
SUCCEED{ {(Qx Q™) xCTxd{..} xc{.}}, ..}
“SUCCEED{ {(Qx Q") x {'LCT'} x d{..} x c{}},..}
}

The occurrence of events will introduce in the follow up states (Q’)
complex terms (CT) as names for the events. If they do not occur nothing
will change. If an introduced event succeeds then some effect will change
the follow-up state. If the event will not succeed (L) then nothing will
change but the story leads back before that state where the event occurred
(Q'7). This allows a kind of repetition.

A practical device to realize such a mapping within an extended graph is
the following procedure:

1. Given a vertex v with the properties {Py, ..., P;} enhanced by some
complex terms.

2. Construct a new vertex v’ as follows: (i) copy vertex v to vertex v’; (ii)
delete all properties in v’ which shall be cleared out written as 'd{...};
(i) create new properties which shall be introduced, written as 'c{...}".
The deletion-creation operations are processed in a certain order: first
deletion and then addition, change = d ® c.

3. The expression 'operation() : d{}, ¢{}’ defines the meaning of the opera-
tion by the deletion and creation information.

4. The full change-expression is written as follows: <v, v’,operation —
name() : d{},c{}). In case an event does not succeed one writes
(v,v', Loperation — name() : d{},c{})

3 This handling of complex terms as
potential operations embedded in a state
has a certain similarity with the view

of quantum mechanics onto reality (cf.
Feynman (1985) or Gornitz (2006)). A
’state’ in quantum mechanics is always

a space of possibilities with varying
probabilities. To transform the possibilities
in measurable (classical) units one has to
reduce the possibilities. The concept of the
actor story in this book looks to states as a
structure which is enhanced with a set of
(here “finitely many’) possible actions which
can become real’ but must not.

Richard Feynman. QED. the strange
theory of light and matter. Princetn
University Press, Princeton, Oxford, 1
edition, 1985; and Thomas Gornitz. Quanten
sind anders. Die verborgene Einheit der
Welt. Spektum Akademischer Verlag,
Heidelberg (Germany), 1 edition, 2006

AS AS TEXT, COMIC, GRAPH

CHANGE STATEMENTS AND PROBABILITY: Until now a state can become
associated with a finite set of change-statements indicating possible oper-
ations. Without further information it is nearly impossible to decide which
one of these possible changes shall happen. Usually the problem will be
solved by the participating actors which have individual behavior functions
and therefore are the actors the source of information what will be done. If
the actors will be deterministic systems then it can happen that repetitions
of the actor story can reveal some stable frequencies of selections. If the
actors are not deterministic then the outcome can vary and therefore the
observed frequencies of selections can vary too.

Example MAS

In this paragraph it will be shown how one can construct a mathematical
actor story (MAS). According to the formal definition of an AAl-expert
generating a MAS (cf. 4.7) we have the following basic mapping:

T+ DR X Ly — MAS

This describes the case where an expert generates a MAS ‘from scratch’.
In this book it will be assumed that a textual actor story TAS will be gener-
ated first. Having such a textual version gives a better starting point because
the construction of a TAS has realized a pre-selection of a subset of the
domain of reference. The new construction of a mathematical actor story
can use the ’pre-formatted’ domain of reference using the TAS and the
interpretation function Tt;tl. The format of the mapping function t,,,;;, has
then the format:

Tn DR X TAS x Ly — MAS
Thus we take as a starting point the simple TAS from above:

1. Start: A person A stands before a closed door. Besides the door there is
a numeric keypad.

2. Entering Key: The person A enters a key into the keypad. GOTO state
named 'Goal’. ELSE GOTO state named 'Start'.

3. Goal: The door is open.

In a first step one tries to identify at which point in the actor story at least
one property is changing. These changes can then be used to identify a
change as a succession of two states: the state before the change g and
the state with the change ¢’. Good indicators of changes are actions or
events. Such an action is given with the expression ’enters a key’. Thus
we have a state g1 before this action and a state 42 with the action. And
from this follows by definition that there must exist a follow-up state 43 to the
action which represents the change, if there is a change because the action
was successful. If the action was not successful then one has to decide
what should be the case. If it should be possible that the action can be

31

32 ACTOR ACTOR INTERACTION [AAI] WITHIN SYSTEMS ENGINEERING (SE) AN ACTOR CENTERED APPROACH
TO PROBLEM SOLVING IN ENGINEERING COMBINING ENGINEERING AND PHILOSOPHY VERSION 14.AUGUST 2018

repeated then one has to go back to a state before the action can happen.
In this case this could be state g1 again. Because there is no further change
identifiable the actor story ends here; a very ’short story’...

From this analysis we can derive a fist rough version of the mathematical
actor story as follows:

MAS:(g1) iff gl = (V1,E1IIl,E]AlLel) (4.11)
Vi = {q1,42,43}
El = {(q1,92),(q2,91),(42,93)}

What is still missing this are the properties of the different states and the
details of the changes. First one can define the properties of each state:

1. g7: A person A stands before a closed door. Besides the door there is a
numeric keypad.

2. g2: The person A enters a some key into the keypad.
3. g3: The door is open.

In state g1 there are three objects: a person, a door, and a keypad.
These will be named as U1, D1, Kp. These names are associated with
attributes like being a person’, 'being a door’, ‘being closed’, and ‘being
a numeric keypad'’. These attributes will be encoded as PERSON (U1),
DOOR(D1),CLOSED(D1), and KEYPAD(Kp). Then there are two re-
lations: "before’ and "besides’. This will be encoded as BEFORE (U1, D1)
and BESIDES(Kp, D1). Thus the set of properties of state 41 can be
summarized as follows:

1. g1 = {PERSON(U1), DOOR(D1), KEYPAD(Kp), CLOSED(D1),
BEFORE(U1, D1), BESIDES(Kp, D1)}.

2. g2: The person A enters a some key into the keypad.
3. g3: The door is open.

In state g2 we can define again three objects: person, key, keypad.
These will be named as U1, K1, Kp. These names are associated with
attributes like ‘being a person’, ‘being a numeric keypad’, ‘being a key'.
These attributes will be encoded as PERSON (U1), KEY (K1), and
KEYPAD(Kp). Then there is a special property called an action with
the expression ’enters ...". This action-expression is a complex term with
three arguments: the actor doing the action (the person), some object used
within this action (the key), and the goal of this action (the keypad). This will
be encoded as enter(U1,K1, Kp). This gives the following complete state
g2. But attention: although the textual version of the actor story does not
mention the other properties which are known from state g1 they are still
in existence, if not otherwise told. And this can be done only by a change
statement (see below).

1. g1 = {PERSON(U1), DOOR(D1), KEYPAD(Kp), CLOSED(D1),
BEFORE(U1,D1), BESIDES(Kp, D1)}.

AS AS TEXT, COMIC, GRAPH

2. 42 = {PERSON(U1),KEY (K1), DOOR(D1), KEYPAD(Kp),
CLOSED(D1), BEFORE(U1, D1), BESIDES(Kp, D1), enter(U1,K1,Kp)}

3. g3: The door is open.

In state g3 does the textual version only mention one object, the door.
But clearly the other objects ‘person and keypad did not vanish. Therefore
we have still the objects U1, D1, Kp. While the attributes for the object
person and keypad did not change, it is now told, that die property of the
door has change; it is now "open’. Therefore we get the following list of
properties: PERSON(U1), KEYPAD(Kp), DOOR(U1), OPEN(D1).
Furthermore we have still the two relations: 'before’ and 'besides’. Thus the
set of properties of state g3 have to be summarized as follows:

1. g1 = {PERSON(U1), DOOR(D1), KEYPAD(Kp), CLOSED(D1),
BEFORE(U1,D1), BESIDES(Kp, D1)}.

2. g2 = {PERSON(U1),KEY (K1), DOOR(D1), KEYPAD(Kp),
CLOSED(D1), BEFORE(U1, D1), BESIDES(Kp, D1), enter(U1,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>