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Following the general concepts of the paper ’AAI - Actor-Actor Interaction. A Philosophy of Science
View’ from 3.Oct.2017 this paper illustrates a simple application where the difference as well as the
interaction between an actor story and several actor models is shown. The details of interface-design as
well as the usability-testing are not part of this example.(This example replaces the paper with the title
’AAI - Case Study Actor Story with Actor Model. Simple Grid-Environment’ from 15.Nov.2017)
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1 Problem

We assume a problem document Dp with a
content as follows: There is a room in a building,
whose door shall be protected by an electronic
key. Everybody who wants to enter this room by
the door has to key-in a number. If the number is
not correct then the door stays closed, otherwise
the door will open. No further constraints.1

2 AAI-Check

Whether the problem P from the problem doc-
ument Dp is a candidate for an AAI-analysis
depends from the presence of the following prop-
erties:

1. Is there at least one task (T) given, which has
to be realized by at least one user (U)?

2. Is the environment (E) to the task T specified?

3. Which kinds of constraints (C) are specified?

4. Which kinds of assistive actors (AssA) are as-
sumed?

There is at least one task (T) given with the task
to enter a room in a building. The environment (E)
of this task is given implicitly by the building from
which the room is a part. The user (U) is given by
all the actors which have the duty and the right to
enter this room; this can be human persons, but
this could also be intelligent machines designed
for such a task. The assistive actor (AssA) is in
this case a system managing an automatic door
controlled by an electronic key. The door together
with the electronic key represent an interface of
the system. Further constraints (C) are not yet
specified.

3 Actor-Story (AS)

To analyze this problem further one has to dig
into the problem so far that one is able to tell a

1The missing of any kind of constraint is in a real problem
completely unrealistic.

complete story, how to realize the task of the
problem document.

It can be some work to investigate the details
of such a story.2 The investigation is complete
if the resulting story is sound, that means all
participants agree that they understand the story
and that they accept it.

The idea of telling a story assumes that every
task-realization can be seen as a process whith
some start state SSTART and at least one goal
state SGOAL. Between start and goal state there
can be finitely many intermediate states Si, i ∈ n.
The complete set of states ST has at least two
members: start and goal. While the goal state is
an end state with no connections back, it holds for
all other states that there can be connections to
every other state of the finite set of states ST .

A state S ∈ ST is understood as a collection
of static properties π. A change of a state can
only happen, if at least one property of a state
has changed. If Si is such a state then the state
Si+1 is the product of such a change if either at
least one property πr of state Si has been deleted
in the follow-up state Si+1 or a new state πs has
been created. Modifications are handled here as
a combination of deletion of the old version and
creation of the new.

That what can cause a change is here called
an event. Events can be of different kinds, mostly
actions of some actors. Generally are events
mappings from states into states: ε : ST 7−→ ST .

To communicate a story three basic modes are
assumed in the actual theory: textual, mathemat-
ical, as well as pictorial. Here only the textual
and mathematical modes are illustrated. For the
pictorial mode thee some follow-up paper.

3.1 AS as a Text

1. START: The user stands before the closed
door of the room which he has to enter. The

2In reality this is often the biggest challenge of a project
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door has a keypad with buttons for the numer-
als (0,1,. ..., 9).

2. CHANGE-EVENT: ACTION: The user keys in
two numbers in sequence. EFFECT : Either
nothing is changing or the door opens.

3. GOAL: The user stands before the door of the
room which he has to enter and the door is
open.

Comments: This is the actor story from the
point of view of an external observer. In an
everyday-context the story gets its plausibility if
one assumes, that the user somehow knows what
he has to do. Thus in this case he has to open
the door. Additionally must the system posses a
kind of a control-mechanism which can observe,
what the user has done and can therefore decide
whether the user-actions match the control con-
dition. This additional knowledge can not directly
be expressed within the actor story. For this one
has to construct in this concrete case two actor
models, one for the human user and one for the
system.

3.2 Translation of a Textual AS into a
Formal AS

To express something formally one has infi-
nite many possibility to do this. In this text we
restrict this space to a Quantifier-Free-Predicate-
Language (QFPL).3 Furthermore one has to have
a meaning-relation which tells how one has to
interpret these expressions with regard to the real
world.4

We will proceed in two steps: (i) First we will
directly translate the text version of the actor story
into a formal expression and then (ii) we will give
a graphical version of this formal expression.

1. START: The user stands before the closed
door of the room which he has to enter. Be-
sides the door is a keypad with buttons for the
numerals (0,1,. ..., 9).

3For a full definition of this language see section 7
4See section 8

Figure 1: Toy Example No.1 - As a formal graph
(simplyfied)

2. SSTART = {USER(u) ∧ DOOR(d) ∧
CLOSED(d) ∧ BEFORE(u, d) ∧
KEY PAD(p) ∧NUMERALS({0, 1, ..., 9})}

3. CHANGE-EVENT: ACTION: The user keys in
two numbers in sequence. EFFECT : Either
nothing is changing or the door opens.

4.

ENTER(u, {2, 3}, p) ⇒
SGOAL = SSTART

Case1 : NIL()

Case2 :

DELETE SGOAL CLOSED(d)

CREATE SGOAL OPEN(d)

5. GOAL: The user stands before the door of the
room which he has to enter and the door is
open.

6. SGOAL = {USER(u) ∧ DOOR(d) ∧
OPEN(d)∧BEFORE(u, d)∧KEY PAD(p)∧
NUMERALS({0, 1, ..., 9})}

3.3 AS as a Formal Expression

1. SSTART = {USER(u) ∧
DOOR(d) ∧ CLOSED(d) ∧

4



Figure 2: Comic version of the example start state

BEFORE(u, d) ∧ KEY PAD(p) ∧
NUMERALS(p, {0, 1, ..., 9})}

2.

ENTER(u, {2, 3}, p) ⇒
SGOAL = SSTART

Case1 : NIL()

Case2 :

DELETE SGOAL CLOSED(d)

CREATE SGOAL OPEN(d)

3. SGOAL = {USER(u) ∧ DOOR(d) ∧
OPEN(d)∧BEFORE(u, d)∧KEY PAD(p)∧
NUMERALS({0, 1, ..., 9})}

Comment: There can be more than only one
event being attached to a state. Two different
events attached to the same state have to have
either different effects or different target states.

3.4 Translation of a Formal AS into a
Pictorial AS

Here a simple example of a pictorial version of
the actor story. The mapping between the formal
expressions and the pictorial elements is giving
implicitly in the pictures themselves.

1. START: See figure 2

2. CHANGE-EVENT: See figure 3

3. GOAL: See figure 4

Figure 3: Example action: enter numbers in key-
pad

Figure 4: Example: change after the enter-action
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4 Actor-Model (AM)

Reading the actor story one can distinguish states
and events, but one can in case of an event not
necessarily clearly decide the exact conditions
why a state change will happen.

Thus if – as in the example above – a user keys-
in two numbers one knows in general that there
can only be two outcomes: either the numbers are
matching the required code or not. If not then the
start state will not change, otherwise, it will.

To remedy this uncertainty one has to construct
explicit actor models which provide all the informa-
tion necessary to decided the concrete outcome
when such state changes really will happen and
when not.

To enable such a transparent interaction be-
tween actor and environment it will be assumed
that an actor is generally an input-output system
(IOSYS), that means that an actor has inputs (I)
allowing some kind of perceptions of his environ-
ment as well as outputs (O) allowing changes,
modifications in the environment. Furthermore it
is assumed that every actor has some behavior
function φ which determines how the actor will
respond with an output given some inputs. More
formally this can be written as follows:

Def: Input-Output System (IOSYS)

IOSY S(x) iff x = 〈I,O, IS, φ〉 (1)
I := Input

O := Output

IS := Internal states

φ : I × IS 7−→ IS ×O

Thus the behavior function φ generates an
output O depending from the actual input I and
some internal states IS, and – this is reflexive –
the behavior can again change the internal states
IS such, that these are in another state for a next
response. This means that the same input can be
followed by different responses depending from
the internal states. This includes a property which
often is called learning.

Applying these concepts for a first sketch of
actor models in the above example we can write
the following texts.

4.1 AM for the User as a Text

1. INPUT: The user can see the door as an ob-
ject and the keypad for entering numbers. He
can also distinguish the buttons with the differ-
ent numerals {0, 1, ..., 9} marked on the but-
tons.

2. OUTPUT: The user can use at least one fin-
ger to press the different buttons.

3. PHI: When the door is closed then will the
user press two times the buttons with certain
numerals to realize a code of two consecutive
numbers. If the door will not open the user will
repeat this action.

4.2 AM for the System as a Text

1. INPUT: The system with the keypad- and
door-interface can sens the pressing of ev-
ery button associated with the numbers
{0, 1, ..., 9} and the properties OPEN and
CLOSED of the door.

2. OUTPUT: The system with the keypad- and
door-interface can change the property of the
door to OPEN or to CLOSE.

3. PHI: The default property of the door is
CLOSED. When two buttons have been
pressed one after the other and the asso-
ciated numbers in a short-term memory as
(n1,n2) match a stored code (c1,c2) then the
system will open the door. It can sens when
the door is open.

5 Combined AS and AM as a
Text

Now, with these additional models one can specify
the complete behavior of the example more
precise.
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1. AS: START: The user stands before the
closed door of the room which he has to enter.
Besides the door is a keypad with buttons for
the numerals (0,1,. ..., 9).

2. AM-User: The user sees the closed door and
he knows that he has to press with a finger the
buttons of the keypad with the numbers of the
known 2-number-code (c1,c2).

3. AM-System: The systems is prepared to re-
ceive button-pressings.

4. CHANGE-EVENT: ACTION: The user keys in
two numbers in sequence. EFFECT : Either
nothing is changing or the door opens.

5. AM-User: The user presses with a finger the
buttons of the keypad with the numbers of the
known 2-number-code (c1,c2).

6. AM-System: The system senses the two
button presses with two associated numbers
(n1,n2). If the sensed numbers (n1,n2) match
the stored 2-number-code (c1,c2) in the sys-
tem then the system will change the door to
OPEN, otherwise not.

7. GOAL: The user stands before the door of the
room which he has to enter and the door is
open.

8. AM-User: The user sees the opened door and
he knows that he can now enter the room

9. AM-System: The system senses that the door
is open.

5.1 AM as an Algorithm

Above we have a description of actor models as
a text. But the text is already structured using
concepts like input, output as well as behavior
function. This points to the general structure given
in the definition of an input-output-system (cf.
page 4).

This is a very general mathematical structure
and gives no hint how one should implement such
a structure as an algorithm.

One very old but still widely used paradigm is
the so-called GOMS-Paradigm, an abbreviation

for Goals, Operators, Methods, and Selection
rules.5. In Card et.al. it is described as follows:

• METHOD: A method is a composition of goals
and operators following the goal to realize it.

• GOAL: A goal is something to be achieved
and will be represented by some language ex-
pression.

• OPERATOR: An operator is some concrete
action which has inputs, outputs, as well as a
duration.

• SELECTION RULE: A selection rule has an
IF-THEN-ELSE structure: IF a certain condi-
tion is fulfilled, THEN some method or goal
or operation will be selected, otherwise the
ELSE-part will be executed.

These concepts are still a bit abstract. To
realize a GOMS-model on a real computer one
has to translate it in some modern computer
programming language.

In the next sections it will be shown how a
simple simulation of the example No.1 could look
like.

6 Simulation

To be done ...

6.1 Simulating the AS

To be done ...

6.2 Simulating the AM

To be done ...

6.3 Simulating AS with AM

To be done ...
5A first extensive usage of a GOMS model can be found in

Card et al. (1983) [CMN83]:chapt.5, especially pp.144ff
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7 Appendix: Formalisms
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7.1 Set of Strings

To describe some intended meaning formally one needs at least a formal language. Basically every
kind of a formal language L is a finite alphabet Σ, whose elements – the symbols – can be concate-
nated one after the other to sequences of symbols called words. A word w is either empty ε or it has
a certain length |w| > 0. The concatenation of symbols and words is associative and there exists an
identity element e, which is given by the empty word ε.

Def: Formal Language L

L(x) iff x = 〈Σ,Σ∗, conc, ||, ε〉 (2)
Σ := Finite set of distinguished symbols (3)
Σ ⊆ Σ∗ (4)

WORD(w) iff w ∈ Σ∗ (5)
w,w′ ∈ Σ∗ ⇒ conc(w,w′) = ww′ ∧ ww′ ∈ Σ∗ (6)

|w| := Length of words w ∈ Σ∗ (7)
ε := Empty word (8)
|ε| = 0 (9)
εw = wε = w (10)
{} := emptyset ∅ (11)
{} 6= {ε} (12)

a, b, c ∈ Σ∗ ⇒ (ab)c = a(bc) (ASSOC) (13)
e := Identity element (14)

a ∈ Σ∗ ⇒ ae = ea = a (IDENTITY ) (15)

7.2 Predicate Language

For the task of modeling it is helpful to introduce a more specialized language called quantifier-free
predicate language QFPL (or short LP ), which will serve as part of the modeling language Lm used
in the tetx. In this LP one has names for objects, predicates for properties and relations, and some
logical operators, but no quantifiers. Predicates and names together represent atomic quantifier-free
predicate expressions AQFPE, which represent a subset of the LP , which will be called atomic LP or
ALP . Related to some given domain of reference DR one can define an interpretation ι which maps
every atomic predicate expression into the domain of reference.

If there are expressions φ, φ′ from LP one can apply some logical operators onto these expressions.
In this context the following logical operators are assumed: negation ¬ as in ¬φ and the operator and
∧ as in φ ∧ φ′.

Def:Atomic Quantifier-free Predicate Expressions AQFPE (or: LP )

9



ALP ⊆ Σ∗ (16)
P (...) := set of predicates (uppercase letters) (17)
x... := set of names (lowercase letters) (18)

P (x...) := atomic predicate expression (19)
P (x...) ∈ ALP (20)

Thus, an atomic expression a ∈ ALP is an n-ary predicate P (...) with n-many arguments x1, ..., xn,
where each xi is a name of an object such, that it is decidable with regard to a domain of reference DR

whether the object in the argument of the predicate is part of DR and that the predicate is part of DR

and that the relation between the objects mentioned and the predicate are given in DR as assumed in
the expression.

In general it is a difficult – and until today a not completely solved – problem, how one can establish
a fully correct mapping between expressions of a language and some parts of the intended real world
sections, as long as the referees of these decisions are human persons.

Def:Logical Connectors LC

{¬,∧} ⊆ LC (21)
¬ := negation (22)
∧ := and (23)

Def: Quantifier Free Predicate Language LP

ALP ⊆ LP (24)
φ ∈ LP ⇒ ¬φ ∈ LP (25)

φ, φ′ ∈ LP ⇒ φ ∧ φ′ ∈ LP (26)

Because the binding of the operator ¬ to an expression is stronger then the binding of the operator
∧ one does not need additional brackets in an expression.
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8 Appendix: The Meaning of
Expressions

Using an expression e of some language L e ∈ L
is only associated with some additional meaning
µ if there exists some mapping from the set of
expressions given by L into some domain of
references (DR).

Thus in the English Language LEN the ex-
pression ’dog’ is usually rooted in some learned
pattern given as internal states (IS) of the user,
which corresponds some properties in the real
world (W). The internal states represent only
a subjective kind of meaning compared to the
objective meaning in the real world. Often there
exists also a derived objective meaning if one
uses pictorial elements which are accepted by
speakers as sufficient representations of the
intended meaning. Thus if one has a photo or a
comic painting of a ’real dog’ then this pictorial
representation is often used as if it is an objective
meaning.

8.1 States

In the case of states it is assumed that states are
sets of properties and that properties can be writ-
ten with predicate expressions from the language
of atomic quantifier-free predicate expressions
LAQFPE .

Thus a state S could be written as
S = {DOOR(d) ∧ OPEN(d)}. An individual
expressions like DOOR(d) representing a property
has as such no meaning as long there exists no
mapping into some domain of reference.

To map such formal expressions directly into
the real world W without any kind of ambiguity is
until today technically impossible. As the history of
philosophy of science could shown with numerous
examples it is even not possible in the case of
so-called empirical theories.6 Therefore one has
to compromise to deal with this requirement.

6See e.g. the overview in F.Suppe (1977) [Sup77]

The simplest procedure which most authors
are using is to use as formal expressions those
which resemble expression of everyday English
like in the before mentioned expression ’DOOR(d)’
or ’OPEN(d)’. Thus doing this the author of the
formal expressions with similarities to an everyday
language is implicitly assuming that the reader has
some knowledge of the everyday language with
their meaning and that the reader automatically
is using the meaning mechanisms of the known
everyday language without giving explicitly a tech-
nical meaning relation µ. In this case the reader
will automatically interpret the formal expression
’DOOR(d)’ in the manner that there is some object
with the name ’d’ and this object has the property
’to be a door’ in the intention of the everyday
meaning of the English language. Similarly with
the expression ’OPEN(d)’: The assumed object ’d’
has the additional property ’to be open’.

In most cases this can work sufficiently well. But
has to keep in mind that these implicitly introduced
meanings are not clearly defined and are basically
vague and ambiguous. this means that they are
possible sources of errors.

Knowing this one can interpret even com-
plex formal expressions like the following
one: SSTART = {USER(u) ∧ DOOR(d) ∧
CLOSED(d)∧BEFORE(u, d)∧KEY PAD(p)∧
NUMERALS(p, {0, 1, ..., 9})}. Applying an ’ev-
eryday meaning-relation’ µEN could then give the
interpretation that we have a start-state GSTART

with some properties like an object ’d’ which is a
door and is closed, and an object ’u’ which is a
user and ’stands before’ the door. There is also an
object ’p’ which is a keypad with the numerals ’0,
..., 9’.

A compromise between the implicit meaning
relation µEN and a more explicit meaning relation
µPict realized by pictorial elements is a pictorial
language Lpict which can generate 2-dimensional
pictures whose elements are mapped into formal
expressions of L (cf. figure 2).
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8.2 Changes by Events

States are assumed to be static. All properties are
static. In that moment something is changing then
the state is changing from the actual state Si to a
follow-up state Si+1, written here as Si ⇒ Si+1.

While the meaning of the properties of a state
µ(S) is either a borrowed meaning from some
everyday language into real world or a defined
meaning into some pictorial language it is difficult
to define a change, because a change is no direct
object. A change is a mapping between two
different sets of properties like µ : ST 7−→ ST .

If one looks to the states as finite sets of
properties then a follow-up state Si+1 differs from
the source state Si either by some property which
has been deleted or has been created.

Thus it could be an idea to describe changes
as properties of properties from a meta-level :
given are two states Si, Si+1 and Si+1 can be con-
structed out of Si by explicitly deleting properties
as well as creating. The general schema can look
like this:

Def: CHANGE-EVENT

P (...) ⇒ (27)
Si+1 = Si

DELETE Si+1 P (...), ..., P (...)

CREATE Si+1 P (...), ..., P (...)

Example:

Given is the state Si as {USER(u)∧DOOR(d)∧
CLOSED(d)∧BEFORE(u, d)∧KEY PAD(p)∧
NUMERALS({0, 1, ..., 9})}

Then the action occurs that the user enters the
numerals {2, 3} into the keypad. The effect of this
action is that the door opens; a new state arises:

ENTER(u, {2, 3}, p) ⇒ (28)
Si+1 = Si

DELETE Si+1 CLOSED(d)

CREATE Si+1 OPEN(d)
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