
AAI-ANALYSIS. USED FORMALISMS
Version V2 (still not complete)

eJournal: uffmm.org, ISSN 2567-6458
2.May 2018

Email: info@uffmm.org

AUTHOR: Gerd Doeben-Henisch
EMAIL: gerd@doeben-henisch.de

Contents

1 Introduction 1

2 Domain of Reference DR 2

3 Formal Representation 3

4 Example 3

5 Self-Incrementing Name-Spaces 3

6 Makros 4

7 A Graph 4

8 A Fact-Graph 4

9 The Simulation of a Graph 4

10 A Pictorial Story 4

Abstract

This is a short introduction into those formalisms, which will be used during the AAI-analysis as
described in the AAI-Theory-Micro-Edition. This version differs strongly from preceding versions.

1 Introduction

During the AAI-analysis an ’actor story (AS)’ has to be composed by the AAI-experts. An actor story
assumes that a task can be understood as a series of ’situations’ also called ’states. A state is assumed
to represent a finite ’collection of facts’. The ’transition’ from one state to another is characterized by
’facts which change’. There can be different kinds of changes which represent different options which

1



lead to ’different successor states’.

For such an actor story at least the following ’modes of representations’ are assumed:

1. The base version is represented as a ’text’ D0 written in an ordinary language named L0.

2. One of the extended versions is a ’formalized version’ Dst of the base version written in a ’formal
language’ named Lst. It is assumed that there exists a ’translation function’ τ0,st : D0 7−→ Dst.

3. A second extended version is a ’pictorial version’ Dpict of the base version written in a ’pic-
torial language’ named Lpict. It is assumed that there exists two more ’translation functions’
τ0,pict : D0 7−→ Dpict as well as τst,pict : Dst ←→ Dpict

4. A third extended version is a ’(mathematical) graph version’ Dγ of the formalized version writ-
ten in a ’graph language’ named Lγ . It is assumed that there exists a ’translation function’
τst,γ : Dst ←→ Dγ

5. A fourth extended version is a ’simulated version’ Dsim of the base version written in a formal
language Lε which describes an ’automaton’ named α. This automaton can ’simulate’ the actor
story in each of the preceding modes as a sequence of states (connected in the graph), as a
sequence of pictures (following the order given by the graph), and each simulation mode is always
commented by the text from the textual mode.

2 Domain of Reference DR

If an AAI expert starts the construction of a representation for an actor story it has to be assumed
that there exist a ’domain of reference’ DR either as a ’real situation’ or as a ’mental model’, which
represents all the facts which shall be analyzed.

The basic elements of this domain of reference are as follows:

1. There are ’objects’ associated with ’attributes’, at least one. There can be attributes which are
associated with more than one object.

2. An attribute associated with only one object is also called a ’property’.

3. An attribute associated with more than one object is called a ’relation’.

4. Attributes associated with objects constitute ’facts’.

5. A whole situation or state is called a ’collection of facts’.

6. A ’transition’ from one state s to another state s’ is characterized by a ’change’ of at least one fact,
i.e. an existing ’fact’ can either be ’deleted’ in the successor state or a not yet existing fact can
newly be ’created’ in the successor state.

7. With regard to a state ’more than one change’ can occur alternatively which is manifested by
different possible successor states.

2



3 Formal Representation

To be able to represent the content of the domain of reference DR in formal expressions one needs a
formal language Lst which fits to DR. The introduction of these formal expressions happens stepwise
following the ’ingredients’ of the domain of reference. Implicitly this gives an ’interpretation’ ι′ too from
elements of DR to formal expressions from Lst.

1. The ’objects’ of DR will be represented by ’Names’ in Lst, realized by lower-case letters.

2. The ’attributes’ of DR will be represented by ’Predicates’ in Lst, realized by upper-case letters.

3. A predicate expression in Lst associated with only one name in Lst is also called a ’property’.

4. A predicate expression in Lst associated with more than one name in Lst is also called a ’relation’.

5. Predicates associated with names constitute ’atomic expressions’ in Lst and atomic expressions
can represent ’facts’ in DR. An atomic expression can occur in a special ’is-equal-relation’ written
as ’=’ equating a fact-name with a fact, written as ’Fname = fact’. The elements on the left or on
the right of an ’equation-relation’ can be substituted for each other.

6. A ’collection of facts’ in DR can be represented in Lst as a set of atomic expressions. A set of
atomic expression can also occur in a special ’is-equal-relation’ written as ’=’ equating a Set-name
with a set of facts, written as ’Sname = {f1, ..., fn}’. The elements on the left or on the right of an
’equation-relation’ can be substituted for each other.

7. A ’transition’ from one state s to another state s’ can be represented by a ’change expression’ ε in
Lst defined by ε ⊆ Sname× Sname× Fname× 2Fname × 2Fname. A change expression indicates
first the given state, then an successor state, then a fact name which represents an action causing
a change, then a set of fact-names indicating which facts have to be deleted, and finally a set of
fact-names indicating which facts have to be created.

8. Because in the domain ’more than one change’ can occur alternatively it is possible to represent
more than one change expression, but given as a fixed sequence ε = ε1⊗...⊗εn every εi represents
then a change from a state s to a state s’.

4 Example

Thus if one has in DR an object which is an ’actor’ with name ’a’ behaving as a ’user’ one could
represent this attribute with the expression ’USER(a)’ of Lst. If there exists another object with name
’i’ in DR serving as an ’interface’ for the user one can represent this property with the expression
’INTERFACE(i)’ of Lst. And if one wants to describe in DR the relation, that the user ’a’ can
’see’ the interface object ’i’, one can represent this with the expression ’SEES(a,i)’ in Lst. A state
’s’ inDR can then be written with the expression ’s = {USER(a), INTERFACE(i), SEES(a, i)}’ of Lst

5 Self-Incrementing Name-Spaces

If someone starts to formalize a domain of reference DR with expressions from the language Lst one
can think of the set of ’Names’ as well as of the set of ’Predicates’ as an initially ’empty set’. Every

3



name which during the process of formalization will be introduced will be stored in the set of ’Names’ or
’Predicates’. Thereby the set of ’Names’ and ’Predicates’ is incrementing. If the actor story has been
finished the sets of ’Names’ and ’Predicates’ will be kept fixed.

6 Makros

... how one can replace collections or parts of collections by names and thereby compress graphs for a
better understanding ...

7 A Graph

... describing what a graph is ...

8 A Fact-Graph

... and how one can extend the definition with facts and changes.

9 The Simulation of a Graph

...

10 A Pictorial Story

...

4


