PROGRAMMING WITH PYTHON
Simple Programming Environment with ubuntu
16.04
emerging-mind.org eJournal ISSN 2567-6466
Email: info@emerging-mind.org
10.-12.February 2018

Gerd Doeben-Henisch
gerd@doeben-henisch.de

February 12, 2018

Contents

1 The Environment 1
2 Steps To Prepare Python Environment 2
3 Use Python Interactive Console 3
4 Debugging with the Code Module 6

Abstract

This text describes a simple programming environment for python3
in an ubuntu 16.04 environment.

1 The Environment

The minimal environment includes

1. As operating system ubuntu 16.04 LTS
2. The python3 language version 3.5.2



Some of the texts | am using for this small introduction are the following
ones:

* https://www.python.org/

* http://docs.python-guide.org

python’ in Wikipedia(EN) [WE 18]

Zelle (2017) [Zel17]

Romano et.al. (2016) [RPH16]

Walters (2014) [Wal14]

To check, in which folder python3 is located, you can enter: which
python3. My system answers: /usr/bin/python3, or asking for python3.5
will produce /usr/bin/python3.5.

2 Steps To Prepare Python Environment

For the following steps | have additionally used:
https://www.digitalocean.com/community/tutorials/how-to-install-python-3-and-set-ur

1. Check the last updates: sudo apt-get update
Check version of python3: python3 -V
Answer: Python 3.5.2

Packet manager pip is installed: python3-pip

o & wDn

Recomended for a robust install: sudo apt-get install build-essential
libssl-dev libffi-dev python3-dev

o

To enable virtual environments you need: python3-venv

7. For the EML python programs we create the environment: mkdir en-
vironments



8. Go into this directory: cd environments

9. And generate inside the folder ’environments’ the new folder 'eml’:
pyvenv eml

10. This generates a directory with several sub-folders: Is em/ shows you
bin include lib lib64 pyvenv.cfg share

11. To activate the eml environment one has to type: source eml/bin/activate.
The prompt is now prefixed with the name of the environment called
‘'eml’, e.g. (eml) gerd@Doeben-Henisch: /environments$

12. Remark: Inside the virtual environment, one can use the command
python instead of python3, and pip instead of pip3.

13. Test the environment by editing a simple program: gedit hello.py. Af-
ter closing the editor enter the command: python hello.py. This will
produce the output: Hello, World!

14. To leave the environment, simply type the command deactivate and
you will return to your original directory.

15. To simplify the activation | have written a one-line mini-shell-script
located in the local folder ’bin’ as follows:

#!/bin/sh
environments/eml/bin/activate

To use the script one has to make it executable with chmod u+x
venv.sh and then one can call it from the home-directory with source
venv.sh.

3 Use Python Interactive Console

For the following steps | have additionally used:
https://www.digitalocean.com/community/tutorials/how-to-work-with-the-python-intera

1. To activate the eml environment one has to type: source eml/bin/activate.
The prompt is now prefixed with the name of the environment called
‘'eml’, e.g. (eml) gerd@Doeben-Henisch: /environments$

2. To activate the python interactive console within the environment one
enters: python. This produces the output: Python 3.5.2 (default, Nov
232017, 16:37:01) [GCC 5.4.0 20160609] on linux Type "help”, "copy-

)

right”, “credits” or "license” for more information.



3. Now one can enter directly python commands like:

>>> a=120

>>> b=333

>>> diff=b-a

>>> diff

213

>>> print(°Diff ’,diff)
Diff 213

>>>

4. To check whether a certain module is available one can check this
with the command: import modul-name, e.g. import matplotlib. If
this is available, one gets the answer: Traceback (most recent call
last): File "< stdin >, line 1, in < module > ImportError: No module
named ‘matplotlib’

5. To install the module matplotlib one enters the following command:

(eml) gerd@Doeben-Henisch:”/environments$ pip install matplotlib

Collecting matplotlib

Downloading matplotlib-2.1.2-cp35-cp3bm-manylinuxl_x86_64.whl (15.0MB)
Collecting six>=1.10 (from matplotlib)

Downloading six-1.11.0-py2.py3-none-any.whl

Collecting numpy>=1.7.1 (from matplotlib)

Downloading numpy-1.14.0-cp35-cp3bm-manylinuxl_x86_64.whl (17.1MB)

Collecting pyparsing!=2.0.4,!=2.1.2,1=2.1.6,>=2.0.1 (from matplotlib)
Downloading pyparsing-2.2.0-py2.py3-none-any.whl (56kB)

Collecting python-dateutil>=2.1 (from matplotlib)

Downloading python_dateutil-2.6.1-py2.py3-none-any.whl (194kB)

Collecting pytz (from matplotlib)

Downloading pytz-2018.3-py2.py3-none-any.whl (509kB)

Collecting cycler>=0.10 (from matplotlib)

Downloading cycler-0.10.0-py2.py3-none-any.whl

Installing collected packages: six, numpy, pyparsing, python-dateutil, pytz, cj
Successfully installed cycler-0.10.0 matplotlib-2.1.2 numpy-1.14.0 pyparsing-2.

6. This procedure reveales further, that the actual version of pip is not
up-to-date. This triggered the following update sequence:

Collecting pip

Downloading pip-9.0.1-py2.py3-none-any.whl (1.3MB)
Installing collected packages: pip

Found existing installation: pip 8.1.1



Uninstalling pip-8.1.1:
Successfully uninstalled pip-8.1.1
Successfully installed pip-9.0.1

. Then one can go back to the interactive console and call again the
matplotlib module:

(eml) gerd@Doeben-Henisch:”/environments$ python
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import matplotlib
>>>

. One can leave the python console either with 'Ctrl D’ or within the
python console with ’quit()’. The last version will store the ’quit()-
command’ in the console history log. This can be shown with starting
an editor after leaving the python console:

(eml) gerd@Doeben-Henisch:”/environments$ gedit ~/.python_history

a-e-main23.pyw

1s

ae6-2-6-main.py

a=120

b=333

diff=b-a

diff

print (’Diff °’,diff)

gerd = ’Gerd’

anita = ’Anita’

if len(gerd) < len(anita):
print(’Gerd is shorter than Anita’)
print(’Gerd is shorter than Anita’)
gerd

anita

if len(gerd) < len(anita):
print (’Gerd’)

else:

print(’Anita’)

import matplotlib

quit()



4 Debugging with the Code Module

Rather than stepping through the code with a debugger, you can add the
code module to your Python program to instruct the program to stop execu-
tion and enter into the interactive mode in order to examine how your code
is working. The code module is part of the Python standard library. To see
a complete example go to https://www.digitalocean.com/community/
tutorials/how-to-debug-python-with-an-interactive-console.

Once one is done using the code module to debug the code, one has
to remove the code functions and import statement.

References

[RPH16] Fabrizio Romano, Dusty Phillips, and Rick van Hattem. Python:
Journey from Novice to Expert. Packt Publishing Ltd., Birming-
ham (UK), 1 edition, 2016.

[Wal14] Gregory Walters. Python Quick Syntax Reference. apress, 1
edition, 2014. http://www.myilibrary.com?ID=600465.

[WE18] Wikipedia-EN. Python (programming language). 2018.

[Zel17] John Zelle. Python Programming: An Introduction to Computer
Science. Franklin, Beedle, Portland (Oregon, USA), 3 edition,
2017.



