
1

AASE - Actor-Actor Systems Engineering
Theory & Applications
Micro-Edition (Vers.9)

eJournal: uffmm.org, ISSN 2567-6458
13.June 2018

Email: info@uffmm.org

Gerd Doeben-Henisch
Louwrence Erasmus

Zeynep Tuncer

F

CONTENTS

1 History: From HCI to AAI 2

2 Different Views 3

3 Philosophy of the AAI-Expert 4

4 Problem (Document) 5

5 Check for Analysis 5

6 AAI-Analysis 5
6.1 Actor Story (AS) . 6

6.1.1 Textual Actor Story (TAS) . 7
6.1.2 Pictorial Actor Story (PAT) . 8
6.1.3 Mathematical Actor Story (MAS) . 8
6.1.4 Simulated Actor Story (SAS) . 11
6.1.5 Task Induced Actor Requirements (TAR) . 12
6.1.6 Actor Induced Actor Requirements (UAR) . 12
6.1.7 Interface-Requirements and Interface-Design 12

6.2 Actor . 13
6.2.1 Actor and Actor Story . 13
6.2.2 Actor Model . 13
6.2.3 Actor as Input-Output System . 14
6.2.4 Learning Input-Output Systems . 15
6.2.5 General AM . 16
6.2.6 Sound Functions . 16
6.2.7 Special AM . 17
6.2.8 Hypothetical Model of a User - The GOMS Paradigm 18

Frankfurt University of Applied Sciences (FRA-UAS) and Institut for New Media (Frankfurt)(INM)
Council for Scientific and Industrial Research (CSIR) of South-Africa
Technical University Darmstadt (TUD)

2

6.2.9 Example: An Electronically Locked Door . 18
6.2.10 A GOMS Model Example . 21
6.2.11 Further Extensions . 21
6.2.12 Design Principles; Interface Design . 22

6.3 Approaching an Optimum Result . 22

7 What Comes Next: The Real System 22
7.1 Logical Design, Implementation, Validation . 23
7.2 Conceptual Gap In Systems Engineering? . 23

8 The AASE-Paradigm 23

References 24

Abstract

This text is based on the the paper ”AAI - Actor-Actor Interaction. A Philosophy of Science View” from 3.Oct.2017
and version 11 of the paper ”AAI - Actor-Actor Interaction. An Example Template” and it transforms these views in the
new paradigm ’Actor- Actor Systems Engineering’ understood as a theory as well as a paradigm for and infinite set
of applications. In analogy to the slogan ’Object-Oriented Software Engineering (OO SWE)’ one can understand the
new acronym AASE as a systems engineering approach where the actor-actor interactions are the base concepts for
the whole engineering process. Furthermore it is a clear intention to view the topic AASE explicitly from the point of
view of a theory (as understood in Philosophy of Science) as well as from the point of view of possible applications
(as understood in systems engineering). Thus the classical term of Human-Machine Interaction (AAI) or even the older
Human-Computer Interaction (HCI) is now embedded within the new AASE approach. The same holds for the fuzzy
discipline of Artificial Intelligence (AI) or the subset of AI called Machine Learning (ML). Although the AASE-approach
is completely in its beginning one can already see how powerful this new conceptual framework is. 1

1 HISTORY: FROM HCI TO AAI
To speak of ’Actor-Actor Interaction (AAI)’ instead of ’Human-Computer Interaction (HCI)’ is rooted in the
course of history. When the World War II ended several advances in technology and software gave raise to
great expectations and visions what the future can bring mankind to improve life.2

Looking to the course of events between 1945 and about 2000 one can observe a steady development
of the hardware and the software in many directions. This caused an explosion in many variants of new
applications and usages of computer. This continuous challenge of how human persons can interact
with this new technology provoked a rapid development what has been called in the beginning ’Human
Computer Interaction (HCI)’. But with the extension of the applications in nearly all areas of daily live
from workplace, factory, to education, health, arts and much more the interaction was no longer restricted
to the ’traditional’ computer but interaction happened with all kinds of devices which internally or in the
background used computer hardware and software. Thus a ’normal’ room, a ’normal’ street, a ’normal’
building, a toy, some furniture, cars, and much more turned into computerized devices with sensors and
actuators. At the same time the collaborators of human persons were not only other human persons

1. This text has a long ’conceptual history’ leading back to the Philosophy-of-Science studies of Doeben-Henisch 1983 - 1989
in Munich under the guidance of Peter Hinst, many intensive discussions between Doeben-Henisch and Erasmus about Systems
engineering since 1999, a paper written by Doeben-Henisch and Wagner 2007 [1] with ongoing discussions since then, a lecture
by Doeben-Henisch about formal specification and verification in 2010 [2], two papers by Erasmus and Doeben Henisch in 2011
[3], [4], about 20 regular semesters with the topic Human-Machine Interaction by Doeben-Henisch at the Frankfurt University of
Applied Sciences (Frankfurt, Germany)(unpublished) in the timespan 2005 - 2015, two regular semesters with the topic AAI together
with Tuncer in SS2016 and WS2016 at the Frankfurt University of Applied Sciences (Frankfurt, Germany) (unpublished), and two
workshops with Erasmus in summer 2016 and Spring 2017 (unpublished). Additionally many discussions between Doeben-Henisch
and Idrissi about AI and AAI since 2015.

2. For some ’bits of history’ see Doeben-Henisch (2018) [5]

3

Fig. 1. Overview Systems Engineering Process - participating actors

or certain animals but more and more ’intelligent’ machines, robots, smart interfaces. Thus to speak of
a ’human user’ interacting with a ’technical interface’ was no longer appropriate. A more appropriate
language game is the new talk of ’interacting actors’, which can be sets of different groups of actors
interacting in some environment to fulfill a task. Actors are then biological systems (man as well as animals)
and non-biological systems.

This new perspective is guiding the following considerations.

2 DIFFERENT VIEWS

If one wants to deal with the development of optimal interfaces within certain tasks for executing actors3

one can distinguish different views onto this problem (see figure 1).

The common work view in systems engineering is an expert (EXP) as part of a systems engineering
process (SEP) who takes a problem description Dp and does some analysis work to find an optimal
solution candidate (OSC).

3. Today still mostly human persons.

4

One level above we have the manager (MNG) of the systems engineering process, who is setting the
framework for the process and has to monitor its working.

Another upper level is the philosopher of science (POS) who is looking onto the managers, processes,
and their environments and who delivers theoretical models to describe these processes, to simulate and
to evaluate these.

In this text the Actor-Actor Interaction (AAI) is the main focus, embedded in a Systems Engineering
Process (SEP), all embedded in a minimal Philosophy of Science (PoS) point of view.

For this the following minimal SEP-structure is assumed4:

SEP (x) iff x = 〈P, S, Sep〉 (1)
Sep : P −→ S

Sep = α⊗ δ ⊗ µ⊗ υ ⊗ o
α := Analysis of the problem P

δ := Logical design

σ := Implementation of S

υ := V alidation

o := Deployment

The outcome of the analysis of an AAI-expert is an optimal solution candidate (OSC) for an interface of
an assisting actor embedded in a complete behavior model MSR given as an actor story (AS) combined
with possible actor models (AMs). This output provides all informations needed for a following logical
design. The logical design provides the blue-print for a possible implementation of a concrete working
system whose behavior should be in agreement (checked through a validation phase) with the behavior
model provided by the AAI-analysis.

3 PHILOSOPHY OF THE AAI-EXPERT

Before digging into the details of the following actor-actor interaction (AAI) analysis done by an AAI-expert
one has to consider the conditions under which the AAI-expert is doing his job. These considerations are
done in a separate paper called ’Philosophy of the AAI-Expert’ (see Doeben-Henisch (2018) [6]).

The main topic in the philosophy paper is centered around the findings of modern biology and
psychology that the ability of human persons to use a set theoretical language Lε to talk about the
experiences with the world is grounded in the cognitive machinery of human persons including complex
processes related to perception, memory, spatial and temporal thinking, embedding of languages and
others. Because the human brain in the body is not directly interacting with the outside world but mediated
by sensors and actuators it is this complex cognitive machinery which constructs an inner model of the
outside world. And it are exactly the properties of this ’inner model’ which provide a ’point of reference’ for
all our thinking and talking.

One conclusion from these considerations is that reality is basically perceived as a stream of events,
which can be divided in distinguishable situations, called states. A state is understood as a set of properties
embedded in a three-dimensional space. If at least one property changes a state changes. Subsets of
properties can be understood as objects, which in turn can be subdivided into ’actors’ and ’non-actors’.

4. For the first paper of Erasmus together with Doeben-Henisch about this subject see [3]

5

Actors can ’sense’ their environment and they can ’respond’. More distinctions are possible as needed.

To understand how an AAI-expert perceives his world, generates internal models, and how he is
communicating with others, one has to clarify these philosophical groundings.

4 PROBLEM (DOCUMENT)
1) The problem document DP is the result of a communication between some stakeholder (SH)

and some experts, which have discussed a problem P which the stakeholder wants to be solved.
In this context it suffices to describe shortly in the introduction of the problem document which
persons have been participating in the communication with their communication addresses for
further questions.

2) Due to the fuzziness of human communication one has to assume to a certain degree a semantic
gap with regard to the participants of the communication which generated the problem document
as well as for potential readers of the problem document.5

3) Additionally to the general problem a finite set of special constraints (C) can be given, which
correspond to the traditional ’non-functional requirements’. To do this in the right way one has to
describe the ’intended meaning’ of these constraints in a way that it is possible either to decide,
whether this intended meaning is fulfilled by the following actor story and actor models or that
these constraints pointing to the follow up phases of the systems engineering process.

5 CHECK FOR ANALYSIS

Within the general analysis phase of systems engineering the AAI-perspective constitutes a special view.
This implies a check of the occurrence of the following aspects:

1) At least one task (T) and
2) an environment (ENV) for the task and
3) an executive actor (ExecA) as the intended user.

6 AAI-ANALYSIS

The goal of the AAI-analysis is to find an optimal assistive actor (AssA)6 to support the executive Actor
(ExecA)7 in his task. For this to achieve one needs an iterative application of the whole AAI-analysis
process whose results are evaluated for an optimal solution.

To analyze the problem P one has to dig into the problem P so far that one is able to tell a complete
story, how to understand and later to realize the task.

It can be some work to investigate the details of such a story. The investigation is complete if the
resulting story is sound, that means all participants agree that they understand the story and that they
accept it.

To communicate a story we assume the following main modes: textual, pictorial, mathematical, as well
as simulated.8

.

5. For an early discussion of one of the authors about the semantic-gap problem see Doeben-Henisch & Wagner (2007) [1].
6. Traditionally understood as the technical interface.
7. Traditionally understood as the human user.
8. For an extended explanation of the formalisms used in this document see the web-page https://uffmm.org/2017/12/27/

formal-appendix-for-the-aai-case-studies/

6

6.1 Actor Story (AS)

To communicate a story in the main modes textual, pictorial, mathematical as well as simulated one has to
consider the above mentioned epistemological situation of the AAI-expert.

The point of view underlying the description of an actor story AS is the so-called 3rd-person view.
This means that all participating objects and actors are described from their outside. If an actor acts and
changes some property through it’s action it is not possible in a 3rd-person view to describe the inner states
and inner processes, that enabled the actor to act and why he acts in this way. To overcome the limits of a
3rd-person view one has to construct additional models called Actor Models (AMs). For more details have
a look to the section 6.2.1.

The relationship between the traditional ’functional requirements (FR)’ and the ’actor story’ is such, that
all necessary functional requirements have to be part of the actor story. The ’non-functional requirements
(NFR)’ have to be defined in their intended meaning before the actor story and then it must be shown, how
the structure of the actor story ’satisfies’ these criteria. In this sense are the ’non-functional requirements’
presented as ’constraints’ which have the status of ’meta-predicates’, which have to be designed in an
appropriate ’control logic’ for actor stories.9

The Philosophy behind the Actor-Story concept – as pointed out in the figure 2 – is given in a draft
paper by Doeben-Henisch (2018) [6] describing the basic relationships between the empirical external
world with the body as a part and the internal, mental, structures and processes enabling things like
concepts, memories, languages with meaning etc.

From this one can derive that different modes to represent empirical matters with symbolic expressions
like a language L have as primary point of reference the ’mental ontology ’ DATontol of the AAI experts.
While the mental ontology is assumed to be ’the same’ for all different modes of symbolic articulation10, the
different modes of articulation can express different aspects of the same mental ontology more highlighted
than in other modes of symbolic articulation.

In the case of expressions of some ’everyday language’ L0 like German or English we have only
symbols of some alphabet, concatenated to strings of symbols or articulated as a stream of sounds.
Thus an understanding of the intended meaning is completely bound to the mental encoding of these
expressions, eventually associated with some other clues by body-expressions, mimics, special contexts,
and the like.

If we would use a ’pictorial language’ Lpict as in a comic strip, we would have again some strings of
symbols but mostly we would have sequences of two-dimensional drawings with the symbols embedded.
These drawings can be very similar to th perceptual experience of spaces, objects, spatial relations, timely
successes, and more properties which somehow ’directly’ encode real situations. Thus the de-coding of
the symbol expressions is associated with a strong ’interpretation’ of the intended situations by ’world-like
pictures’. In this sense one could use such a pictorial language as a ’second hand ontology’ for the
encoding of symbolic expressions into their intended meaning.

9. This topic of ’Non-Functional Requirements (NFRs)’ as well as ’Functional Requirements (FRs)’ and their relationship is a hot
topic in systems engineering and has not yet a complete solution. The general problem is how to ’represent’ the NFRs in a way, that
these can be handled in the overall system. The following selected papers (only a subset of thematic related papers) can illustrate
the discussion: dealing mainly with NFRs see Khalique et.al. (2017) [7], Fellir et.al. (2015) [8], Mairiza et.al. (2013) [9], Suhr et.al.
(2013) [10], Yin et.al. (2013) [11], Zhang et.al.(2013) [12], Menzel et.al. (2010) [13], Liu et.al. (2012) [14], Kassab et.al. (2009)
[15]. Dealing mainly with FRs see Lian et.al. (2017) [16], Abrahão et.al (2013) [17]. The big advantage of the AASE paradigm in
this context is that the mathematical version of the actor story provides a formal structure which allows to describe all functional
requirements (FRs) in a formal way which allows the annotation of non-functional requirements (NFRs) easily.

10. Which is a highly idealistic assumption in case of learning systems

7

Fig. 2. Basic Mappings between empirical reality with body as a part and internal mental structures

But for the intended engineering of the results of an AAI analysis neither the everyday language mode
L0 nor the pictorial language mode Lpict is sufficient. What is needed is a ’formal language’ Lε which can
easily be used for logical proofs, for automated computations, as well as for computer simulations. One
good candidate for such a formal language is a language using mathematical graphs which are additional
enriched with formal expressions for properties and changes between states. This allows an automatic
conversion into automata which can simulate all these processes. Additional one can apply automatic
verification for selected properties, e.g. for non-functional requirements!

From this we derive the following main modes of an actor story in this text: (i) Everyday language
L0(here English), (ii) Pictorial language Lpict (in this version of the text not yet defined), (iii) Formal
langauge Lε, (iv) Converted automata αLε out of the formal language, which can simulate the actor story.

The additional actor models described after the actor story can be seen as special extensions of the
actor story and have to be included in the simulation mode. This is straightforward but has also not yet
been included in this version of the text.

6.1.1 Textual Actor Story (TAS)
An actor story AS in the textual mode is a text composed by expressions of some everyday language L0

– default here is English LEN –. This text describes as his content a sequence of distinguishable states.
Each state s – but not an end-state – is connected to at least one other follow-up state s′ caused by
the change of at least one property p which in the follow up state s′ either is deleted or has been newly
created.

8

Every described state s is a set of properties which can be sub-distinguished as objects (OBJ) which
are occurring in some environment (ENV). A special kind of objects are actors (As). Actors are assumed to
be able to sense properties of other actors as well as of the environment. Actors are also assumed to be
able to respond to the environment without or with taking into account what happened before.

Actors are further sub-divided into executive actors as well as assistive actors. Assistive actors Aassist
are those who are expected to support the executive actors Aexec in fulfilling some task (t) (with t ∈ T).

A task is assumed to be a sequence of states with a start state sstart and a goal state sgoal, where the
goal-state is an end state. The set of states connecting the start and the goal state is finite and constitutes
a path p ∈ P . There can be more than one path leading from the start state to the goal state. The states
between the start and the goal state are called intermediate states.

Every finished actor story has a least one path.11

6.1.2 Pictorial Actor Story (PAT)

In case of an textual actor story (TAS) – as before explained – one has a set of expressions of some common
language L0. These expressions encode a possible meaning which is rooted in the inner states (IS) of the
participating experts. Only the communicating experts know which meaning is encoded by the expressions.

This situation – labeled as semantic gap – can cause lots of misunderstandings and thereby errors and
faults.

To minimize such kinds of misunderstandings it is a possible strategy to map these intended meanings
in a pictorial language Lpict which has sufficient resemblances with the intended meaning. Replacing the
textual mode by a story written with a pictorial language Lpict can show parts of the encoded meaning
more directly.

As one can read in the section 3 ’Philosophy of the View-Point’ the world of objects for a standard user
is mapped into a spatial structure filled with properties, objects, actors and changes. This structure gives
a blue-print for the structure of the possible meaning in an observer looking to the world with a 3rd-person
view. Therefore a pictorial language can substitute the intended meaning to some degree if the pictorial
language provides real pictures which are structurally sufficient similar to the perceived visual structure of
the observer.

To construct a pictorial actor story (PAS) one needs therefore a mapping of the ’content’ of the textual
actor story into an n-dimensional space embedded in a time line. Every time-depended space is filled with
objects. The objects show relations within the space and to each other. Objects in space, the space itself,
and the changes in time are based on distinguishable properties. To conserve a consistency between the
textual and the pictorial mode one needs a mapping between these both languages: π : L0 ←→ Lpict.

6.1.3 Mathematical Actor Story (MAS)

The Graph as Backbone

To translate a story with spatial structures and timely changes into a mathematical structure one can
use a mathematical graph γ extended with properties Π and changes Ξ for encoding.

11. To turn a textual actor story into an audio actor story (AAS) one can feed the text into a speech-synthesis program which
delivers spoken text as output.

9

Fig. 3. Change event between two states

A situation or state q ∈ Q given as a spatial structure corresponds in a graph γ to a vertex (also called
’node’) v, and a change ξ ∈ Ξ corresponds to a pair of vertices (v, v′) (also called an ’edge’ e ∈ E).

If one maps every vertex v ∈ V into a set of property-expressions π ∈ 2LΠ with λ : V 7−→ 2LΠ and every
edge e ∈ E into a set of change-expressions LΞ with ε : E 7−→ 2LΞ then a vertex in the graph γ with the
associated property-expressions can represent a state with all its properties and an edge e followed by
another vertex v′ labeled with a change-expression can represent a change from one state to its follow-up
state.

A graph γ extended with properties and changes is called an extended graph γ+.

Thus we have the extended graph γ+ given as:

γ+(g) iff g = 〈V,E,LΠ, Lχ, λ, ε〉 (2)
E ⊆ V × V (3)
λ : V −→ 2LΠ (4)
ε : E −→ 2LΞ (5)

The occurrence of a change is represented by two vertices v, v′ connected by an edge e as
e : {v} 7−→ {v′}. The follow-up vertex v′ has at least one property-expression less as the vertex v or
at least one property-expression more. This change will be represented in a formal change-expression

10

ε ∈ Lχ containing a list of properties to be deleted as d : {p1, p3, ...} and properties to be newly created as
c : {p2, p4, ...}.

The deletion-operation is shorthand for a mapping of subtracting property-expressions like
d : {s} 7−→ s − {p1, p3, ...} and the creation-operation is shorthand for a mapping of adding property-
expressions like c : {s} 7−→ s ∪ {p2, p4, ...}. Both operations are processed in a certain order: first deletion
and then addition, change = d⊗ c.

Objects and Actors

Every assumed object o ∈ OBJ attached to a vertex represents a sub-set of the associated properties.
An actor a ∈ A is a special kind of object by A ⊆ OBJ .

Enriched by Properties

1) Generally it is assumed that there exists some ’domain of reference’ DR which corresponds to a
situation/ state of an actor story.

2) For every ’object’ in DR one can introduce a ’name’ realized as a string of ’small alphanumeric
letters’ beginning with a ’capital letter’. Names are a subset of terms. Examples: ’Hobbes’, ’U2’,
’Moon’, ...

3) Mappings from distinct objects into other distinct objects which have all to be objects of DR

are called ’functions’ realized as a string of ’small alphanumeric letters’ followed by n-many
terms enclosed in brackets. Functions are as well a subset of terms. Examples: ’add(3,4)’,
’push(Button1)’, ...’

4) ’Properties’ Π are relations between objects in an assumed ’domain of reference’ DR. The
properties are symbolically represented by property expressions LΠ which are realized by n-many
terms functioning as ’arguments’ of n-ary ’predicates’. Thus a property-expression is a sequence
of an n-ary ’predicate’ as a string of ’big alphanumeric letters’ enriched with the ’-’-sign followed
by n-many terms as arguments enclosed in brackets. Example: ’USER(U1)’, ’SCREEN(S)’,
BUTTON(B1)’, ’IS-PART-OF(B1,S)’, ’ON(push(B1))’, ...

5) As stated above there exists a mapping from states into sets of property expressions written as
λ : V −→ 2LΠ

Enriched by Changes

1) A change in the domain DR happens when at least one property disappears or emerges. To
express this symbolically one has to assume (as stated above) that there are two formal states
v, v′ each with property expressions LvΠ, L

v′
Π and the property expressions from follow-up state v′

are generated by applying a ’change-action’ realized as a function α ∈ ACT to the preceding state
v. The change action has a ’name’ realized by a string of ’small alphanumeric values’ followed by
a ’delete function’ named ’delete’ (or short ’d’) and then by a ’creation function’ named ’create’ (or
short ’c’). Thus the change action α is a concatenated operation α = d() ⊗ c(). The arguments of
the delete- and create-function are property expressions.

2) Example: if there is a set of property expressions LvΠ = {SCREEN(S), BUTTON(B1), NOT −
PRESSED(B1)} and a change action α(LvΠ) with the sub-functions d(NOT − PRESSED(B1))
and c(PRESSED(B1)) then the resulting follow-up property set looks like Lv

′
Π =

11

{SCREEN(S), BUTTON(B1), PRESSED(B1)}

3) The complete change expression will be realized as a ’list’: 〈v, v′, α, d(p1, ..., pn), c(p1, ..., pm)〉. This
reads: a change action with name α has been applied to state v and generates a new state v′ by
(i) copying the properties from state v to state v′, then (ii) deletes the properties (p1, ..., pn) in v′,
and then (iii) creates the properties (p1, ..., pm) in v′. The result of applying (i) - (iii) to the old state
v generates the new state v′.

4) Thus change statements are terms derived as a subset as follows: ε ⊆ V ×V ×ACT ×ΠNat×ΠNat

(with Nat as the natural numbers including 0).12

5) If there is in one state v more than one action possible than more than one change statement
is possible. This results in more than one edge leading from state v to n-many follow-up states
v′1, ..., v

′
n.

6) Additional to the names of possible objects we assume a special operator ’not(n)’ applied to
a name ’n’. The meaning of the operator is, that in this case not the name ’n’ is valid, but the
’absence’ of the object signified by the name n’. This is important because otherwise in case of
many alternative options one has to enumerate all alternatives to an object named ’n’.

Correspondence between mathematical and pictorial modes

To keep the consistency between a mathematical and a pictorial actor story one needs a mapping from
the pictorial actor story into the mathematical actor story and vice versa, mp.m : Lpict ←→ Lmath.

6.1.4 Simulated Actor Story (SAS)

A simulated actor story (SAS) corresponds to a given extended graph γ+ by mapping the extended graph
into an extended automaton α+.

The usual definition of a finite automaton is as follows: 〈Q, I, F,Σ,∆〉 with

1) Q as a finite set of states
2) I ⊆ Q as the set of initial states
3) F ⊆ Q as the set of final states
4) Σ as a finite input alphabet
5) ∆ ⊆ Q × Σ∗ × Q as the set of transitions

If one replaces/ substitutes the states by vertices, the input expressions by change-expressions and
the transitions by edges then one gets: 〈V, I, F, Lχ, E〉 with

1) V as a finite set of states
2) I ⊆ V as the set of initial states
3) F ⊆ V as the set of final states
4) Lχ as a finite set of input expressions
5) E ⊆ V × Lχ × V as the set of transitions

Finally one extends the structure of the automaton by the set of property-expressions LΠ as follows:
〈V, I, F, Lχ, LΠ, E, λ〉 with λ : V −→ 2LΠ .

12. The default assumption is that either the delete or the create function has to have at least one property argument.

12

With this definition one has an extended automaton α+ as an automaton who being in state v recognizes
a change-expression ε ∈ Lχ and generates as follow-up state v′ that state, which is constructed out of state
v by the encoded deletions and/ or creations of properties given as property-expressions from LΠ. All state-
transitions of the automaton α+ from a start-state to a goal-state are called a run ρ of the automaton. The
set of all possible runs of the automaton is called the execution graph γexec of the automaton α+ or γexec(α+).

Thus the simulation of an actor story corresponds to a certain run ρ of that automaton α+ which can be
generated out of a mathematical actor story by simple replacement of the variables in the graph γ+.

6.1.5 Task Induced Actor Requirements (TAR)

Working out an actor story in the before mentioned different modes gives an outline of when and what
participating actors should do in order to realize a planned task.

But there is a difference in saying what an actor should do and in stating which kinds of properties
an actor needs to be able to show this required behavior. The set of required properties of an actor is
called here the required profile of the actor A RProfA. Because the required profile is depending from the
required task, the required profile is not a fixed value.

In the general case there are at least two different kinds of actors: (i) the executing actor Aexec and (ii)
the assistive actor Aassis. In this text we limit the analysis to the case where executing actors are humans
and assistive actors machines.

6.1.6 Actor Induced Actor Requirements (UAR)

Because the required profile RProfrequ of an executive actor realizing a task described in an actor
story can be of a great variety one has always to examine whether the available executing actor Aexec
with its available profile RProfavail is either in a sufficient agreement with the required profile or not,
σ : RProfrequ ×RProfavail 7−→ [0, 1].

If there is a significant dis-similarity between the required and the available profile then one has
to improve the available executive actor to approach the required profile in a finite amount of time
χ : Aavail,exec × RProfrequ 7−→ Arequ,exec. If such an improvement is not possible then the planned task
cannot be realized with the available executing actors.

6.1.7 Interface-Requirements and Interface-Design

If the available executing actors have an available profile which is in sufficient agreement with the required
profile then one has to analyze the interaction between the executing and the assistive actor in more detail.

Logically the assistive actor shall assist the executing actor in realizing the required task as good as
possible.

From this follows that the executing actor has to be able to perceive all necessary properties in a given
situation, has to process these perceptions, and has to react appropriately.

If one calls the sum of all possible perceptions and reactions the interface of the executing actor
IntfA,exec and similarly the sum of all possible perceptions and reactions of the assistive actor the interface
of the assistive actor IntfA,assis,then the interface of the assistive actor should be optimized with regard to
the executing actor.

13

To be able to know more clearly how the interface of the assistive actor Intfassis should look like that
the executive actor can optimally perceive and react to the assistive interface one has to have sufficient
knowledge about how the executive actor internally processes its perceptions and computes its reactions.
This knowledge is not provided by the actor story but calls for an additional model called actor model.

6.2 Actor

A main element within the AAI-perspective is the intended executive actor, often called user U. In this AAI-
version of HMI the assistive actor can also be seen as a user. The processing of the task requires that
the user U can perceive all necessary aspects of the task processing as well as he can act as needed.
Besides this one expects that the user U is able to process the perceptual information – here called input I
– in a way that the user is able to generate the right actions – here called output O –. One can break down
the required behavior to a series of necessary inputs I for the user followed by necessary responses O of
the user. This results in a series of input-output pairs pairs {(i, o), · · · , (i, o)} defining implicitly a required
empirical behavior function φe = {(i, o), · · · , (i, o)}. Because any such empirical behavior function is finite
and based on single, individual events, it is difficult to use this empirical finite function as the function of an
explicit model. What one needs is an explicit general theoretical behavior function like:

φ : I 7−→ O (6)

Although an empirical behavior function φe is not a full behavior function, one can use such an empirical
function as a heuristic guide to construct a more general theoretical function as part of a complete
hypothetical model of the user.

6.2.1 Actor and Actor Story
While one can describe in an actor story (AS) possible changes seen from a 3rd-person view one can
not describe why such changes happen. To overcome these limits one has to construct additional models
which describe the internal states of an actor which can explain why a certain behavior occurs.

The general idea of this interaction between actor story and actor model can be seen in figure 4.

1) In a simple actor story with only two states v, v′ we have an actor called ’USER(U1)’ which has
’visual perception’ and which can act with ’motor activities’.

2) Therefore the actor can ’see’ properties like ’SCREEN’, ’BUTTON’, and ’NOT-PRESSED’. Based
on its ’behavior function’ Φ the actor can compute a possible output as a motor-action, described
as an event expression 〈v, v′, press(BUTTON(B1)), d(not− pressed(B1)), C : (pressed(B1))〉.

3) This results in a change leading to v′. The actor U1 is left out in v′, also it is still part of v′.

6.2.2 Actor Model
It is an interesting task, to elaborate a hypothetical model of the internal processes of an user which
defines thetheoretical behavior function φ. To do this broadly with all details is beyond the scope of this text.
Instead we will work out a first basic model which can be understood as a kind of a theoretical template
which can be further extended in the future.

The task of modeling a possible user U is twofold: first (i) one has to define a complete formal model of
a possible structure and it’s dynamic, second (ii) it must be possible to predict the behavior of the model in
a way that it is possible to observe and measure this behavior. If the observable behavior of the model is

14

Fig. 4. Change event with an embedded actor

including the empirical behavior function φe, then the hypothetical model is empirical sound in a weak sense.

φe ⊆ φ (7)

We understand here a model as a mere collection of rules, while an algebraic structure is an extension
to models by including additional sets as well as axioms. But we use the term ’model’ here equivalently to
the term ’algebraic structure’.

6.2.3 Actor as Input-Output System
To enable a transparent interaction between actor and environment it will be assumed that an actor is
generally an input-output system (IOSYS), that means that an actor has (i) inputs (I) from the environment
in a state, which are translated by some kind of a ’perceptional system’ generating perceptions of this
environment as well as (ii) outputs (O) which can cause changes in the environment. The sum of all inputs
I and outputs O defines the basic interface (BIntf) of an input-output system S in an environment E, written
BIntfS,E = {x|x ∈ I ×O}. We can write this as follows:

Def: Input-Output System (IOSYS)

15

IOSY S(S) iff S = 〈I,O〉 (8)
I := Input

O := Output

(9)

and:

Def: Basic Interface (BIntf)

E := Environment of system S (10)
IOSY S(S) iff S = 〈I,O〉 (11)

I := Input ⊆ E
O := Output ⊆ E

BIntfS,E = {x|x ∈ I ×O}

Def: Real Interface (RIntf)
The basic interface (BInf) has to be distinguished from that interface which represents a ’real’ device

interacting with an executive actor. The real interface (RIntf) of an assistive actor ’realizes’ the ’basic
interface’ by providing some sensoric appearance of an assistive actor. Thus if the executive actor needs
an input from the interface there can be visual or acoustic or haptic or other sensoric properties which are
used to convey the input to the executive actor. As well, if the executive actor wants to produce an output to
change some properties in the assistive actor there must be some sensor at the side of the assistive actor
which can receive some ’action’ from the executive actor. The concrete outlook of such a real interface is
the task of the ’interface design’ given a ’basic interface’.

6.2.4 Learning Input-Output Systems
A ’learning input-output system (LIOSYS)’ is a special case of an input-output system because its ’basic
interface can change’! This dynamic behavior is described by a ’learning behavior function’ φ. The learning
behavior function assumes additionally to the inputs (I) and outputs (O) a non-empty set of ’internal states
(IS)’ which can change their properties. These dynamic internal states can ’represent’ some properties
of the inputs in a way, that the system can take these properties into account for the ’computation of the
next output’. Depending on the ’quality’ of these internal representations the system can pre-view ’possible
states’ of the environment and its own situation in it. This structure of internal states as part of a behavior
function is usually called ’memory’ µ. A most general definition of learning input-output systems can be
given as follows:

Def: Learning Input-Output System (LIOSYS)

LIOSY S(S) iff S = 〈I,O, IS, φ〉 (12)
I := Input

O := Output

IS := Internal states

φ : I × 2IS 7−→ 2IS × 2O

From this it follows that the ’basic interface’ is only a subset of the behavior function of a learning
system. This means to ’understand a learning input-output system’ it does not suffice to describe the
behavior of a system once but ’very often’, because a learning system can generally learn always. Thus to

16

’predict’ the behavior of learning systems in an environment is be far not trivial.

The change of behavior which is a property of learning systems is usually driven by ’random’ as well as
’non-random’ properties. Thus to describe the ’dynamics’ resulting from a learning behavior one needs a
sufficient knowledge about these ’change-inducing properties’. In real biological systems these change-
inducing properties seem to be composed of bundles of different functions interacting in a non-trivial way
with each other. Until today a complete and transparent description of these change-inducing properties
seems by far to be a too complex task to do.

6.2.5 General AM

A first simple actor model (AM) for learning actors is given as follows:

AM(u) iff u = 〈I,O, IS, φ〉 (13)
I := Input (14)
O := Output (15)
IS := Internal states (16)
φ : I × 2IS 7−→ 2IS ×O (17)

The term IS represents some internal states and the behavior function is using the internal states
as secondary input as well as secondary output. This means that the behavior function can modify the
internal states, which implies some capability for learning.

6.2.6 Sound Functions

To check whether the behavior of an actor is ’sound ’ does mean here that the ’observable behavior’ (within
a test or in the real working case) is in ’agreement ’ with the actor story.

Thus, given an actor story with some input property i ∈ I in a state S and having an actor model with
the behavior function φ presupposing some internal states IS, then the behavior function φ of the actor
model should generate an output φ(i) = o with o ∈ O in accordance with the possible outcomes described
in the actor story for this state S.

In a standard ’non-learning’ case this can be realized by a behavior function φ which is completely
’deterministic’. In this case the basic interface is identical to the (deterministic) behavior function,
BIntf = φ.

If one assumes a ’learning actor ’ then the actor story describes the ’expected behavior ’ as a set of ’input-
output pairs’ for every state and an actor has to be ’trained to learn’ the ’expected sets of input-output pairs’.

That structure in a learning actor, which enables the ’storage’ of important perceptions as well as the
’re-use’ of these stored perceptions, is here called a ’memory structure’ or shortly a ’memory ’.

One can use therefor a ’task’ as a sequence of expected states defining sequences of input-output
tasks to ’measure’ the ’intelligence’ of an actor. Running a task the first time one can use the percentage
of correctly solved sub-tasks within a certain amount of time as a ’benchmark’ indicating some measure of
’intelligence’.13

13. For an introduction into the topic of psychological intelligence measures see e.g. Eysenk (2004) [18], Rost (2009) [19], Rost
(2013) [20]

17

To measure the ’learning capacity ’ of an actor one can use a task to explore (i) how much time an
actor needs to find a goal state and (ii) how many repetitions the actor will need until the error rate has
reached some defined minimum.14 Another measure could be the quality of the memory by first identifying
a maximum of correctness and then (iii) one measures the duration until which the maximum correctness
of the memory has again weakened below a certain threshold of accuracy.15

While some minimal amount of ’learning time’ is needed by all kinds of systems – biological as well as
non-biological ones – only the non-biological systems can increase the time span for ’not-forgetting’ much,
much wider than biological systems.

Today the biggest amount of executing actors are still biological systems represented by human persons
(classified as ’homo sapiens’), therefore parameters as ’learning time’, ’memory correctness’, or ’memory
forgetting time’ are important to characterize the ’difficulty’ of a task and ways to explore possible settings
which make the task difficult. From such a ’learning analysis’ one can eventually derive some ideas for
possible ’improvements’. From this follows that the format of usability tests should be adapted to these
newly identified behavior based properties.

On account of the unobservability of the inner states (IS) of every real system it follows that all
assumptions about possible inner states as well as about the details of the behavior function φ represent
nothing else as a hypothesis which is given in the format of a formal model. The formal space for such
hypothetical models is infinite.

6.2.7 Special AM
According to Card et al.(1983) [25] one has to assume at least three sub-functions within the general
behavior function:

φ = φperc ⊗ φcogn ⊗ φmot (18)
φperc := Perception (19)
φperc : I 7−→ (V B ∪AB) (20)
V B := V isual buffer (21)
AB := Auditory buffer (22)

φcogn1 : (V B ∪AB)×MSTM −→MSTM (23)
φcogn2 : MSTM ×MLTM −→MSTM ×MLTM (24)

φcogn1+2 := Cognition (25)
φmot : MLTM −→ O (26)
φmot := Motor activity (27)

Thus an input – visual or auditory – will be processed by the perception function φperc into an
appropriate sensory buffer V B oder AB. The contents of the sensory buffers will then be processed
by the partial cognitive function cogn1 into the short term memory (STM), which at the same time can
give some input for this processing. Another cognitive function cogn2 can map the contents of the short
term memory into the long term memory (LTM) thereby using information of the long term memory as
input too. From the long term memory the motor function can receive information to process some output O.

According to these assumptions we have to assume the following partitions:

14. The history of behavioral Psychology provides many examples for such experiments, see e.g. Hilgard et.al. (1979) [21] and
a famous experiment with Tolman (1948) [22] using learning curves and error rates

15. The first scientist who did this in a pioneering work was the German Psychologist Ebbinghaus (1848) [23], English translation
[24]

18

V B ∪AB ∪MSTM ∪MLTM ⊆ IS (28)

6.2.8 Hypothetical Model of a User - The GOMS Paradigm
The model thus far describes an overall structure with a general behavior which does not yet allow some
concrete predictions. To determine a more concrete model several strategies are possible.

One old and popular strategy is labeled GOMS for Goals, Methods, Operators and Selection rules16.

• GOAL: A goal is something to be achieved and will be represented by some language expression.
• OPERATOR: An operator is some concrete action which can be done.
• METHOD: A method is a composition of a goal and some operators following the goal to realize it.
• SELECTION RULE: A selection rule has an IF-THEN-ELSE structure: IF a certain condition is

fulfilled, THEN some method will be selected, otherwise the method following the ELSE marker will
be selected.

In case of the GOMS-strategy the cognitive function φcogn would be described by a finite set of methods
which are organized around some goals.

6.2.9 Example: An Electronically Locked Door
For the following demonstration we use the simple example of an electronically locked door.17

With regard to this example we can construct an actor story as follows:

ACTORSTORY1 =

If we start with state Q1, then it will be followed by state Q2 if the output of the user is pushing the key
with symbol A; otherwise, if the output is different, then we will will keep state Q1. Similar in the following
states: If we are in state Q2 and the output of the user is pushing the key with symbol B, then the user
story switches to state Q3; otherwise we are back in state Q1. Finally, if we are in state Q2 and the user
pushes the key with symbol A, then we will reach the final state Q4, otherwise back again to state Q1.

The details of the different states are given here18:

1) Start = U1 ∪ S1 ∪ Env1
U1 = {USER(U1)}
S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka), KEY(Kb),KEY(Kc),PART-
OF(〈Ka,Kb,Kc〉, K1)}
Env1 = {DOOR(D1), CLOSED(D1)}
Meaning: ’U1’ is the name of a user, ’S1’ the name of a system-interface, and ’Env1’ is the name
of an environment. All three ’U1, S1, C1’ are names for subsets of properties of state Start.

2) CHANGE-AS:〈 Start,Start,push(not(Ka),K1),d(),c()〉, 〈 Start,Q2,push(Ka,K1), d(),
c(PRESSED(Ka))〉,

3) Q2 = U1 ∪ S1 ∪ Env1
U1 = {USER(U1)}
S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka), KEY(Kb),KEY(Kc),PART-
OF(〈Ka,Kb,Kc〉, K1),PRESSED(Ka)}
Env1 = {DOOR(D1), CLOSED(D1)}

16. A first extensive usage of a GOMS model can be found in Card et al. (1983) [25]:139ff
17. For a description of the example see: http://www.doeben-henisch.de/fh/fsv/node13.html in Doeben-Henisch (2010) [2].
18. The graphs are constructed with the DOT-Language using a normal editor under Linux and the KGraphViewer program based

on the graphviz package of software tools developed since 1991 by a team at the ATT&Laboratories. For the theory see e.g. Ganser
et.al (1993) [26], and Gansner et.al. (2004) [27]. For a tutorial see Ganser et.al (2015) [28]

19

Fig. 5. Electronic door example - bare graph, only nodes

Fig. 6. aai-example electronic door: nodes and minimally labeled edges

20

Fig. 7. aai example electronic door with nodes, shortened edge-labels, and subsets of properties

Fig. 8. aai example with a complete graph (only the edge labels are shortened)

4) CHANGE-AS: 〈Q2, Start, push(not(Kb),K1), d(), c()〉, 〈 Q2,Q3,push(Kb,K1), d(),
c(PRESSED(Kb))〉,

5) Q3 = U1 ∪ S1 ∪ Env1
U1 = {USER(U1)}
S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka), KEY(Kb),KEY(Kc),PART-
OF(〈Ka,Kb,Kc〉, K1),PRESSED(Kb)}
Env1 = {DOOR(D1), CLOSED(D1)}

6) CHANGE-AS: 〈Q3, Start, push(not(Ka),K1), d(), c()〉, 〈 Q3,Goal,push(Ka,K1), d(CLOSED(D1)),
c(PRESSED(Ka), OPEN(D1))〉

7) Goal = U1 ∪ S1 ∪ Env1
U1 = {USER(U1)}
S1 = {SYSTEMINTF(S1),KEYPAD(K1), PART-OF(K1, S1), KEY(Ka), KEY(Kb),KEY(Kc),PART-
OF(〈Ka,Kb,Kc〉, K1),PRESSED(Ka)}
Env1 = {DOOR(D1), OPEN(D1)}

21

As one can see the formal description of the actor story offers no information about the internal
structures which determine the behavior of the different users, the executive actor as well as the assistive
actor. To enhance this one has to define additional actor models.

6.2.10 A GOMS Model Example
We will start the construction of a GOMS model for the user of the electronically locked door example. For
this we simplify the GOMS-Model format as follows: IF Input THEN Operation ... ELSE Operation The
Input can either be some value from the set I of possible inputs or from the set IS of the internal states of
the system. In the used example are all properties of the states a possible input or the properties of the
internal states. All these IF-THEN rules are subsumed under the goal to enter the open door.

1) GOMS MODEL FOR USER U1
2) INPUT U1 = VB; OUTPUT U1 = MOT

3) GOAL : OPEN(D1) & DOOR(D1) & enter(D1)

a) IF VB=’CLOSED(D1)’ & IS=’MEM(U1,(Ka,0,Kb,0,Ka,0))’ THEN
IS=’MEM(U1,(Ka,1,Kb,0,Ka,0))’ & MOT=’push(Ka,K1)’

b) IF VB=’CLOSED(D1)’ & IS=’MEM(U1,(Ka,1,Kb,0,Ka,0))’ THEN
IS=’MEM(U1,(Ka,1,Kb,1,Ka,0))’ & MOT=’push(Kb,K1)’

c) IF VB=’CLOSED(D1)’ & IS=’MEM(U1,(Ka,1,Kb,1,Ka,0))’ THEN
IS=’MEM(U1,(Ka,1,Kb,1,Ka,1))’ & MOT=’push(Ka,K1)’

d) IF VB=’OPEN(D1)’ & IS=’MEM(U1,(Ka,1,Kb,1,Ka,1))’ THEN
IS=’MEM(U1,(Ka,0,Kb,0,Ka,0))’ & MOT=’enter(D1)’

These IF-THEN-Rules follow the general behavior function φ : I × 2IS 7−→ 2IS ×O

The system interface S1 has its own GOMS-Model.

1) GOMS MODEL FOR SYSTEM-INTERFACE S1
2) INPUT S1 = K1; OUTPUT S1 = states of the door {CLOSED, OPEN}

3) GOAL : OPEN(D1) & DOOR(D1)

a) IF INPUT=’KEY-PRESSED(K1,Ka)’ & IS=’CODE(C2,(Ka,0,Kb,0,Ka,0))’ THEN
IS=’CODE(C2,(Ka,1,Kb,0,Ka,0))’

b) IF INPUT=’KEY-PRESSED(K1,Kb)’ & IS=’CODE(C2,(Ka,1,Kb,0,Ka,0))’ THEN
IS=’CODE(C2,(Ka,1,Kb,1,Ka,0))’

c) IF INPUT=’KEY-PRESSED(K1,Ka)’ & IS=’CODE(C2,(Ka,1,Kb,1,Ka,0))’ THEN
IS=’CODE(C2,(Ka,1,Kb,1,Ka,1))’ & OUT=’OPEN(D1)’

Thus a complete Process is an interaction between the actor story (AS) and the both actor models
written as GOMS-Models.

6.2.11 Further Extensions
Based on the first version of an actor story one can introduce many more aspects into the story.

The first enhancement of an actor story happens when one defines the different sub states of a state
with their specific properties. Usually the sub states represent typical actors and objects of a situation. In
the AAI case are these special objects the executive actors, the system interfaces as assistive actors as

22

well as the environment as an actor.

The next enhancement is represented by the definition of special behavior functions for the different
actors. These models can be traditional GOMS models or more elaborated formats of models, especially
also learning models.

The third enhancement could be the simulation of the actor story including the actor models by
transforming the graph into an appropriate automaton.

6.2.12 Design Principles; Interface Design

Given the actor model AM of an executive actor Aexec one can derive some actor-based principles AxA,exec,
how the real interface RIntfassis,B of an intended assistive actor B should look like to enable an optimal
performance with the executive actor A. To make the actor-based principles AxA,exec as empirically sound
as possible one needs sufficient empirical research of real actors doing jobs like those required in the actor
story.

From the dependency of the executive-actor-based principles for the design of an assistive-actor
interface it follows that the principles can only be as good as the presupposed model.

6.3 Approaching an Optimum Result

To approach a possible optimum for a finite set of demonstrators one applies a set of usability
measurements – called ’usability test’ – in an iterative process. A usability test UT realizes a mapping
of given demonstrators D into a set of usability values V as follows υUT : D 7−→ D × V . A usability test
includes a finite set of objective as well as subjective sub-tests. The values V of one usability test are
usually given as a finite set of points in an n-dimensional space V n. Thus after a usability test υUT has
been applied to a demonstrator one has an ordered pair (D,V).

To find the relative best demonstrator in a finite set of candidate demonstrators
{(D1, V1), (D2, V2), ..., (Dm, Vm)} one has to define a measure µ : 2V

n 7−→ V n for the assumed finite
many n-dimensional values {V n

1 , V
n

2 , ..., V
n
m} to compare these values and identify for this set an optimal

value. Thus µ(V n
1 , V

n
2 , ..., V

n
m) computes a certain V n

i ∈ {V n
1 , V

n
2 , ..., V

n
m}.

Applying this measure to the set {(D1, V1), (D2, V2), ..., (Dm, Vm)} gives the best demonstrator of this set.

7 WHAT COMES NEXT: THE REAL SYSTEM

After the completion of the AAI-analysis after n-many iterations19 one has an actor story AS in four modes
{TAS, PAS, MAS, SAS}. Furthermore one has possibly different actor models {AMexec, AMassist, ...}, and
one has a demonstrator Demo with the best interface (Di, V

n). Between the assistive and the executive
actor model exists a logical dependency as well as between all actor models and the actor story: without
the actor story the actor models are underspecified. That means the whole specified behavior MSR is
only given as the complex structure 〈AS,AMexec, AMassis, ιas,am−exec, ιas,am−assis〉 where the mappings ι
connect the actor story with the embedded models.

19. It is actually not clear how ’big’ this n should be. Some research is needed.

23

7.1 Logical Design, Implementation, Validation

To convert these results into a real working system SY Sassis one has to process20 a logical design phase δ
which takes into account the whole specified behavior MSR as requirements for the behavior of the intended
system. The outcome should be a blue-print MSR,design for the implementation of a real system, written as

δ : MSR 7−→MSR,design (29)

Based on such a blue-print the implementation phase σ translates these ideas in a physical entity
MSR,real, written as

σ : MSR,design 7−→MSR,real (30)

Because the transfer from the AAI-analysis phase into the logical design phase as well the transfer from
the logical design phase into the implementation phase can principally not completely be defined one has
to run a validation phase υυ which compares the behavior requirements MSR from the AAI-analysis phase
with the behavior of the real system MSR,real. The outcome will be some percentage of agreement with the
required behavior, written as

υυ : MSR ×MSR,real 7−→ [0, 1] (31)

7.2 Conceptual Gap In Systems Engineering?

The theoretically required validation of the behavior of the real system SY Sassis,real with the required
behavior specified as whole behavior model MSR can not work out directly, as long as the specified
behavior is not available in some implemented format.

Diverging from the usual processing of systems engineering it will be assumed in this text that the
whole specified behavior MSR will be translated into a blue-print within logical design (cf. Formula 29)
and similarly will the blue-print version of the whole behavior MSR,design completely be converted in a real
version MSR,real including not only the intended assistive actor but also the complementary executive actor
as well as the necessary actor story (cf. Formula 30).

One way to realize this concept is to implement real simulators to mimic the required behavior .
Especially it should be possible that real users can take over the role of the simulated executive actors
within such simulations or the real world is another actor which takes over the role of the simulated world
of the simulated actor story.

8 THE AASE-PARADIGM

The text so far gives only a very limited account of the whole Actor-Actor Systems Engineering (AASE)
paradigm. We hope to be able to develop it further with many illustrating applications (case studies).

Everybody is invited to share the discussion of this new paradigm with questions, critical remarks, hints,
examples, whatever helps to clarify this paradigm.

There exists a minimal project plan to finalize these ideas in a first booklet (theory and case studies)
until April 2018 with a publication in May 2018. Then everything can happen.

20. For all assumed phases in a systems engineering process see formula 1 in section 2 and more elaborated in the paper
Erasmus & Doeben-Henisch 2011 [4]

24

REFERENCES

[1] G. Doeben-Henisch and M. Wagner, “Validation within safety critical systems engineering from a computational semiotics
point of view,” Proceedings of the IEEE Africon2007 Conference, pp. Pages: 1 – 7, 2007.

[2] G. Doeben-Henisch, Formal Specification and Verification: Short Introduction. http://www.uffmm.org/science-
technology/single/themes/computer-science/personal-sites/doeben-henisch/FSV/THEORY/fsv/fsv.html: Gerd Doeben-
Henisch, 2010.

[3] L. Erasmus and G. Doeben-Henisch, “A theory of the system engineering process,” in ISEM 2011 International Conference.
IEEE, 2011.

[4] ——, “A theory of the system engineering management processes,” in 9th IEEE AFRICON Conference. IEEE, 2011.
[5] G. Doeben-Henisch, “From hci to aai. some bits of history?” eJournal uffmm.org, pp. 1–16, 2018. [Online]. Available:

https://www.uffmm.org/2018/04/19/from-hci-to-aai-some-bits-of-history/
[6] ——, “Philosophy of the actor,” eJournal uffmm.org, pp. 1–8, 2018. [Online]. Available: https://www.uffmm.org/2018/03/20/

actor-actor-interaction-philosophy-of-the-actor/
[7] F. Khalique, W. H. Butt, and S. A. Khan, “Creating domain non-functional requirements software product line engineering using

model transformations,” in 2017 International Conference on Frontiers of Information Technology (FIT), Dec 2017, pp. 41–45.
[8] F. Fellir, K. Nafil, and R. Touahni, “Analyzing the non-functional requirements to improve accuracy of software effort estimation

through case based reasoning,” in 2015 10th International Conference on Intelligent Systems: Theories and Applications
(SITA), Oct 2015, pp. 1–6.

[9] D. Mairiza, D. Zowghi, and V. Gervasi, “Conflict characterization and analysis of non functional requirements: An experimental
approach,” in 2013 IEEE 12th International Conference on Intelligent Software Methodologies, Tools and Techniques (SoMeT),
Sept 2013, pp. 83–91.

[10] A. Suhr, C. Rosinger, and H. Honecker, “System design and architecture ?? essential functional requirements vs. ict security in
the energy domain,” in International ETG-Congress 2013; Symposium 1: Security in Critical Infrastructures Today, Nov 2013,
pp. 1–9.

[11] B. Yin, Z. Jin, W. Zhang, H. Zhao, and B. Wei, “Finding optimal solution for satisficing non-functional requirements via 0-1
programming,” in 2013 IEEE 37th Annual Computer Software and Applications Conference, July 2013, pp. 415–424.

[12] X. L. Zhang, C. H. Chi, C. Ding, and R. K. Wong, “Non-functional requirement analysis and recommendation for software
services,” in 2013 IEEE 20th International Conference on Web Services, June 2013, pp. 555–562.

[13] I. Menzel, M. Mueller, A. Gross, and J. Doerr, “An experimental comparison regarding the completeness of functional
requirements specifications,” in 2010 18th IEEE International Requirements Engineering Conference, Sept 2010, pp. 15–
24.

[14] Y. Liu, Z. Ma, R. Qiu, H. Chen, and W. Shao, “An approach to integrating non-functional requirements into uml design models
based on nfr-specific patterns,” in 2012 12th International Conference on Quality Software, Aug 2012, pp. 132–135.

[15] M. Kassab, O. Ormandjieva, and M. Daneva, “An ontology based approach to non-functional requirements conceptualization,”
in 2009 Fourth International Conference on Software Engineering Advances, Sept 2009, pp. 299–308.

[16] X. Lian, J. Cleland-Huang, and L. Zhang, “Mining associations between quality concerns and functional requirements,” in 2017
IEEE 25th International Requirements Engineering Conference (RE), Sept 2017, pp. 292–301.

[17] S. Abrahão, C. Gravino, E. Insfran, G. Scanniello, and G. Tortora, “Assessing the effectiveness of sequence diagrams in
the comprehension of functional requirements: Results from a family of five experiments,” IEEE Transactions on Software
Engineering, vol. 39, no. 3, pp. 327–342, March 2013.

[18] H. J. Eysenk, Die IQ-Bibel. Intelligenz verstehen und messen, 1st ed. Stuttgart: J.G.Cotta’sche Buchhandlung Nachfolger
GmbH, 2004, englische Originalausgabe 1998: Intelligence. A New Look.

[19] D. H. Rost, Intelligenz. Fakten und Mythen, 1st ed. Weinheim - Basel: Beltz Verlag, 2009.
[20] ——, Handbuch Intelligenz, 1st ed. Weinheim - Basel: Beltz Verlag, 2013.
[21] E. R. Hilgard, R. L. Atkinson, and R. C. Atkinson, Introduction to Psychology, 7th ed. New York - San Diego - Chicago -

et.al.: Harcourt Brace Jovanovich, Inc., 1979.
[22] E. C. Tolman, “Cognitive maps in rats and men,” The Psychological Review, vol. 55, no. 4, pp. 189–208, 1948, 34th Annual

Faculty Research Lecture, delivered at the University of California, Berkeley, March 17, 1947. Presented also on March 26,
1947 as one in a series of lectures in Dynamic Psychology sponsored by the division of psychology of Western Reserve
University, Cleveland, Ohio.

[23] H. Ebbinghaus, Über das Gedächtnis: Untersuchungen zur experimentellen Psychologie, 1st ed. Leipzig: Duncker & Humblot,
1885, uRL: http://psychclassics.yorku.ca/Tolman/Maps/maps.htm.

[24] ——, Memory: A Contribution to Experimental Psychology, 1st ed. New York: Teachers College, Columbia Uni-
versity, 1913, translated from the German Edition 1885 by Henry A. Ruger & Clara E. Bussenius 1913, URL:
http://psychclassics.yorku.ca/Ebbinghaus/index.htm.

[25] S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-Computer Interaction, 1st ed. Mahwah (NJ): Lawrence
Erlbaum Associates, Inc., 1983.

[26] E. R. Gansner, E. Koutsofios, S. C. North, and G.-P. Vo, “A technique for drawing directed graphs,” IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, vol. 19, no. 3, pp. 214–230, 1993.

[27] E. R. Gansner, Y. Koren, and S. North, “Graph drawing by stress majorization,” in Graph Drawing, ser. Lecture Notes in
Computer Science, J. Pach, Ed., no. 3383. Berlin - Heidelberg: Springer-Verlag, pp. 239 – 250.

[28] E. R. Gansner, E. Koutsofios, and S. C. North, “Drawing graphs with dot,” pp. 1–40, 2015, online:
http://www.graphviz.org/pdf/dotguide.pdf.

