
1

AASE - Actor-Actor Systems Engineering
Theory & Applications
Micro-Edition (Vers.3)

eJournal: uffmm.org, ISSN 2567-6458
19.April 2018

Email: info@uffmm.org

Gerd Doeben-Henisch
and

Zeynep Tuncer
and

Louwrence Erasmus
and

Khalid Idrissi

F

CONTENTS

1 History: From HCI to AAI 3

2 Different Views 3

3 Philosophy of the AAI-Expert 3

4 Problem (Document) 4

5 Check for Analysis 4

6 AAI-Analysis 4
6.1 Actor Story (AS) . 4

6.1.1 Textual Actor Story (TAS) . 5
6.1.2 Pictorial Actor Story (PAT) . 5
6.1.3 Mathematical Actor Story (MAS) . 5
6.1.4 Simulated Actor Story (SAS) . 6
6.1.5 Task Induced Actor Requirements (TAR) . 6
6.1.6 Actor Induced Actor Requirements (UAR) . 6
6.1.7 Interface-Requirements and Interface-Design . 7

6.2 Actor Model (AM) . 7
6.2.1 Design Principles; Interface Design . 7

6.3 Simulation of Actor Models (AMs) within an Actor Story (AS) . 8
6.4 Assistive Actor-Demonstrator . 8
6.5 Approaching an Optimum Result . 8

7 What Comes Next: The Real System 8
7.1 Logical Design, Implementation, Validation . 8
7.2 Conceptual Gap In Systems Engineering? . 8

8 The AASE-Paradigm 9

Frankfurt University of Applied Sciences (FRA-UAS) and Institut for New Media (Frankfurt)(INM)
Technical University Darmstadt (TUD)
Council for Scientific and Industrial Research (CSIR) of South-Africa

2

Appendix A: Formalisms 9

References 9

Abstract

This text is based on the the paper ”AAI - Actor-Actor Interaction. A Philosophy of Science View” from 3.Oct.2017 and version 11 of
the paper ”AAI - Actor-Actor Interaction. An Example Template” and it transforms these views in the new paradigm ’Actor- Actor Systems
Engineering’ understood as a theory as well as a paradigm for and infinite set of applications. In analogy to the slogan ’Object-Oriented
Software Engineering (OO SWE)’ one can understand the new acronym AASE as a systems engineering approach where the actor-actor
interactions are the base concepts for the whole engineering process. Furthermore it is a clear intention to view the topic AASE explicitly
from the point of view of a theory (as understood in Philosophy of Science) as well as from the point of view of possible applications (as
understood in systems engineering). Thus the classical term of Human-Machine Interaction (HMI) or even the older Human-Computer
Interaction (HCI) is now embedded within the new AASE approach. The same holds for the fuzzy discipline of Artificial Intelligence (AI)
or the subset of AI called Machine Learning (ML). Although the AASE-approach is completely in its beginning one can already see how
powerful this new conceptual framework is. 1

1. This text has a long ’conceptual history’ leading back to the Philosophy-of-Science studies of Doeben-Henisch 1983 - 1989 in Munich under
the guidance of Peter Hinst, many intensive discussions between Doeben-Henisch and Erasmus about Systems engineering since 1999, a paper
written by Doeben-Henisch and Wagner 2007 [1] with ongoing discussions since then, a lecture by Doeben-Henisch about formal specification and
verification in 2010 [2], two papers by Erasmus and Doeben Henisch in 2011 [3], [4], about 20 regular semesters with the topic Human-Machine
Interaction by Doeben-Henisch at the Frankfurt University of Applied Sciences (Frankfurt, Germany)(unpublished) in the timespan 2005 - 2015,
two regular semesters with the topic HMI together with Tuncer in SS2016 and WS2016 at the Frankfurt University of Applied Sciences (Frankfurt,
Germany) (unpublished), and two workshops with Erasmus in summer 2016 and Spring 2017 (unpublished). Additionally many discussions between
Doeben-Henisch and Idrissi about AI and HMI since 2015.

3

1 HISTORY: FROM HCI TO AAI

To speak of ’Actor-Actor Interaction (AAI)’ instead of
’Human-Computer Interaction (HCI)’ is rooted in the course
of history. When the World War II ended several advances
in technology and software gave raise to great expectations
and visions what the future can bring mankind to improve
life.2

Looking to the course of events between 1945 and
about 2000 one can observe a steady development of
the hardware and the software in many directions. This
caused an explosion in many variants of new applications
and usages of computer. This continuous challenge of
how human persons can interact with this new technology
provoked a rapid development what has been called in
the beginning ’Human Computer Interaction (HCI)’. But
with the extension of the applications in nearly all areas
of daily live from workplace, factory, to education, health,
arts and much more the interaction was no longer restricted
to the ’traditional’ computer but interaction happened with
all kinds of devices which internally or in the background
used computer hardware and software. Thus a ’normal’
room, a ’normal’ street, a ’normal’ building, a toy, some
furniture, cars, and much more turned into computerized
devices with sensors and actuators. At the same time the
collaborators of human persons were not only other human
persons or certain animals but more and more ’intelligent’
machines, robots, smart interfaces. Thus to speak of a
’human user’ interacting with a ’technical interface’ was no
longer appropriate. A more appropriate language game is
the new talk of ’interacting actors’, which can be sets of
different groups of actors interacting in some environment to
fulfill a task. Actors are then biological systems (man as well
as animals) and non-biological systems.

This new perspective is guiding the following
considerations.

2 DIFFERENT VIEWS

If one wants to deal with the development of optimal
interfaces within certain tasks for executing actors3 one can
distinguish different views onto this problem (see figure 1).

The common work view in systems engineering is an
expert (EXP) as part of a systems engineering process
(SEP) who takes a problem description Dp and does some
analysis work to find an optimal solution candidate (OSC).

One level above we have the manager (MNG) of the
systems engineering process, who is setting the framework
for the process and has to monitor its working.

Another upper level is the philosopher of science
(POS) who is looking onto the managers, processes, and
their environments and who delivers theoretical models to

2. For some ’bits of history’ see Doeben-Henisch (2018) [5]
3. Today still mostly human persons.

Fig. 1. Overview Systems Engineering Process - participating actors

describe these processes, to simulate and to evaluate these.

In this text the Actor-Actor Interaction (AAI) is the main
focus, embedded in a Systems Engineering Process (SEP),
all embedded in a minimal Philosophy of Science (PoS)
point of view.

For this the following minimal SEP-structure is assumed4:

SEP (x) iff x = 〈P, S, Sep〉 (1)
Sep : P −→ S

Sep = α⊗ δ ⊗ µ⊗ υ ⊗ o
α := Analysis of the problem P

δ := Logical design

σ := Implementation of S

υ := V alidation

o := Deployment

The outcome of the analysis of an AAI-expert is an
optimal solution candidate (OSC) for an interface of an
assisting actor embedded in a complete behavior model
MSR given as an actor story (AS) combined with possible
actor models (AMs). This output provides all informations
needed for a following logical design. The logical design
provides the blue-print for a possible implementation of
a concrete working system whose behavior should be in
agreement (checked through a validation phase) with the
behavior model provided by the AAI-analysis.

3 PHILOSOPHY OF THE AAI-EXPERT

Before digging into the details of the following actor-actor
interaction (AAI) analysis done by an AAI-expert one has to
consider the conditions under which the AAI-expert is doing
his job. These considerations are done in a separate paper

4. For the first paper of Erasmus together with Doeben-Henisch about
this subject see [3]

4

called ’Philosophy of the AAI-Expert’ (see Doeben-Henisch
(2018) [6]).

The main topic in the philosophy paper is centered
around the findings of modern biology and psychology
that the ability of human persons to use a set theoretical
language Lε to talk about the experiences with the world
is grounded in the cognitive machinery of human persons
including complex processes related to perception, memory,
spatial and temporal thinking, embedding of languages and
others. Because the human brain in the body is not directly
interacting with the outside world but mediated by sensors
and actuators it is this complex cognitive machinery which
constructs an inner model of the outside world. And it are
exactly the properties of this ’inner model’ which provide a
’point of reference’ for all our thinking and talking.

One conclusion from these considerations is that reality
is basically perceived as a stream of events, which can
be divided in distinguishable situations, called states. A
state is understood as a set of properties embedded in a
three-dimensional space. If at least one property changes
a state changes. Subsets of properties can be understood
as objects, which in turn can be subdivided into ’actors’
and ’non-actors’. Actors can ’sense’ their environment and
they can ’respond’. More distinctions are possible as needed.

To understand how an AAI-expert perceives his world,
generates internal models, and how he is communicating
with others, one has to clarify these philosophical
groundings.

4 PROBLEM (DOCUMENT)
1) The problem document DP is the result of a

communication between some stakeholder (SH)
and some experts, which have discussed a problem
P which the stakeholder wants to be solved.
In this context it suffices to describe shortly in the
introduction of the problem document which persons
have been participating in the communication with
their communication addresses for further questions.

2) Due to the fuzziness of human communication one
has to assume to a certain degree a semantic gap
with regard to the participants of the communication
which generated the problem document as well as
for potential readers of the problem document.5

3) Additionally to the general problem a finite set
of special constraints (C) can be given, which
correspond to the traditional ’non-functional
requirements’. To do this in the right way one
has to describe the ’intended meaning’ of these
constraints in a way that it is possible either to
decide, whether this intended meaning is fulfilled by
the following actor story and actor models or that

5. For an early discussion of one of the authors about the semantic-
gap problem see Doeben-Henisch & Wagner (2007) [1].

these constraints pointing to the follow up phases of
the systems engineering process.

5 CHECK FOR ANALYSIS

Within the general analysis phase of systems engineering
the AAI-perspective constitutes a special view. This implies
a check of the occurrence of the following aspects:

1) At least one task (T) and
2) an environment (ENV) for the task and
3) an executive actor (ExecA) as the intended user.

6 AAI-ANALYSIS

The goal of the AAI-analysis is to find an optimal assistive
actor (AssA)6 to support the executive Actor (ExecA)7 in his
task. For this to achieve one needs an iterative application of
the whole AAI-analysis process whose results are evaluated
for an optimal solution.

To analyze the problem P one has to dig into the problem
P so far that one is able to tell a complete story, how to
understand and later to realize the task.

It can be some work to investigate the details of such
a story. The investigation is complete if the resulting
story is sound, that means all participants agree that they
understand the story and that they accept it.

To communicate a story we assume the following main
modes: textual, pictorial, mathematical, as well as simu-
lated.8

.

6.1 Actor Story (AS)

To communicate a story in the main modes textual, pictorial,
mathematical as well as simulated one has to consider the
above mentioned epistemological situation of the AAI-expert.

The point of view underlying the description of an actor
story AS is the so-called 3rd-person view. This means that
all participating objects and actors are described from their
outside. If an actor acts and changes some property through
it’s action it is not possible in a 3rd-person view to describe
the inner states and inner processes, that enabled the actor
to act and why he acts in this way. To overcome the limits of
a 3rd-person view one has to construct additional models
called Actor Models (AMs). For more details have a look to
the section 6.2.

The relationship between the traditional ’functional
requirements (FR)’ and the ’actor story’ is such, that all
necessary functional requirements have to be part of the

6. Traditionally understood as the technical interface.
7. Traditionally understood as the human user.
8. For an extended explanation of the formalisms used in

this document see the web-page https://uffmm.org/2017/12/27/
formal-appendix-for-the-aai-case-studies/

5

actor story. The ’non-functional requirements (NFR)’ have
to be defined in their intended meaning before the actor
story and then it must be shown, how the structure of the
actor story ’satisfies’ these criteria. In this sense are the
’non-functional requirements’ presented as ’constraints’
which have the status of ’meta-predicates’, which have to be
designed in an appropriate ’control logic’ for actor stories.9

6.1.1 Textual Actor Story (TAS)

An actor story AS in the textual mode is a text composed
by expressions of some everyday language L0 – default
here is English LEN –. This text describes as his content a
sequence of distinguishable states. Each state s – but not
an end-state – is connected to at least one other follow-up
state s′ caused by the change of at least one property p
which in the follow up state s′ either is deleted or has been
newly created.

Every described state s is a set of properties which can
be sub-distinguished as objects (OBJ) which are occurring
in some environment (ENV). A special kind of objects
are actors (As). Actors are assumed to be able to sense
properties of other actors as well as of the environment.
Actors are also assumed to be able to respond to the
environment without or with taking into account what
happened before.

Actors are further sub-divided into executive actors as
well as assistive actors. Assistive actors Aassist are those
who are expected to support the executive actors Aexec in
fulfilling some task (t) (with t ∈ T).

A task is assumed to be a sequence of states with a
start state sstart and a goal state sgoal, where the goal-state
is an end state. The set of states connecting the start and
the goal state is finite and constitutes a path p ∈ P . There
can be more than one path leading from the start state to
the goal state. The states between the start and the goal
state are called intermediate states.

Every finished actor story has a least one path.10

9. This topic of ’Non-Functional Requirements (NFRs)’ as well as
’Functional Requirements (FRs)’ and their relationship is a hot topic in
systems engineering and has not yet a complete solution. The general
problem is how to ’represent’ the NFRs in a way, that these can be
handled in the overall system. The following selected papers (only a
subset of thematic related papers) can illustrate the discussion: dealing
mainly with NFRs see Khalique et.al. (2017) [7], Fellir et.al. (2015)
[8], Mairiza et.al. (2013) [9], Suhr et.al. (2013) [10], Yin et.al. (2013)
[11], Zhang et.al.(2013) [12], Menzel et.al. (2010) [13], Liu et.al. (2012)
[14], Kassab et.al. (2009) [15]. Dealing mainly with FRs see Lian et.al.
(2017) [16], Abrahão et.al (2013) [17]. The big advantage of the AASE
paradigm in this context is that the mathematical version of the actor
story provides a formal structure which allows to describe all functional
requirements (FRs) in a formal way which allows the annotation of non-
functional reuirements (NFRs) easily.

10. To turn a textual actor story into an audio actor story (AAS) one
can feed the text into a speech-synthesis program which delivers spoken
text as output.

6.1.2 Pictorial Actor Story (PAT)

In case of an textual actor story (TAS) – as before explained
– one has a set of expressions of some common language
L0. These expressions encode a possible meaning which is
rooted in the inner states (IS) of the participating experts.
Only the communicating experts know which meaning is
encoded by the expressions.

This situation – labeled as semantic gap – can cause
lots of misunderstandings and thereby errors and faults.

To minimize such kinds of misunderstandings it is a
possible strategy to map these intended meanings in a
pictorial language Lpict which has sufficient resemblances
with the intended meaning. Replacing the textual mode by a
story written with a pictorial language Lpict can show parts
of the encoded meaning more directly.

As one can read in the section 3 ’Philosophy of the View-
Point’ the world of objects for a standard user is mapped into
a spatial structure filled with properties, objects, actors and
changes. This structure gives a blue-print for the structure
of the possible meaning in an observer looking to the world
with a 3rd-person view. Therefore a pictorial language
can substitute the intended meaning to some degree if
the pictorial language provides real pictures which are
structurally sufficient similar to the perceived visual structure
of the observer.

To construct a pictorial actor story (PAS) one needs
therefore a mapping of the ’content’ of the textual actor story
into an n-dimensional space embedded in a time line. Every
time-depended space is filled with objects. The objects show
relations within the space and to each other. Objects in
space, the space itself, and the changes in time are based
on distinguishable properties. To conserve a consistency
between the textual and the pictorial mode one needs a
mapping between these both languages: π : L0 ←→ Lpict.

6.1.3 Mathematical Actor Story (MAS)

To translate a story with spatial structures and timely
changes into a mathematical structure one can use a
mathematical graph γ extended with properties Π and
changes Ξ for encoding.

A situation or state q ∈ Q given as a spatial structure
corresponds in a graph γ to a vertex v, and a change ξ ∈ Ξ
corresponds to a pair of vertices (v, v′) which is directly
connected by an edge e ∈ E.

If one maps every vertex v ∈ V into a set of property-
expressions π ∈ 2LΠ with λ : V 7−→ 2LΠ and every
edge e ∈ E into a set of change-expressions LΞ with
ε : E 7−→ 2LΞ then a vertex in the graph γ with the
associated property-expressions can represent a state with
all its properties and an edge e followed by another vertex v′

labeled with a change-expression can represent a change
from one state to its follow-up state.

6

A graph γ extended with properties and changes is
called an extended graph γ+.

Thus we have the extended graph γ+ given as:

γ+(g) iff g = 〈V,E, LΠ, Lχ, λ, ε〉 (2)
E ⊆ V × Lχ × V (3)
λ : V −→ 2LΠ (4)
ε : E −→ 2LΞ (5)

Every assumed object o ∈ OBJ attached to a vertex
represents a sub-set of the associated properties. An actor
a ∈ A is a special kind of object by A ⊆ OBJ .

Some more remarks to a change-event :

The occurrence of a change is represented by two
vertices v, v′ connected by an edge e as e : {v} 7−→ {v′}.
The follow-up vertex v′ has at least one property-expression
less as the vertex v or at least one property-expression
more. This change will be represented in a formal change-
expression ε ∈ Lχ containing a list of properties to be
deleted as d : {p1, p3, ...} and properties to be newly
created as c : {p2, p4, ...}.

The deletion-operation is shorthand for a mapping of sub-
tracting property-expressions like d : {s} 7−→ s−{p1, p3, ...}
and the creation-operation is shorthand for a mapping of
adding property-expressions like c : {s} 7−→ s∪ {p2, p4, ...}.
Both operations are processed in a certain order: first
deletion and then addition, change = d⊗ c.

To keep the consistency between a textual and a pictorial
actor story one needs a mapping from the pictorial actor
story into the mathematical actor story and vice versa,
mp.m : Lpict ←→ Lmath.

.

6.1.4 Simulated Actor Story (SAS)
A simulated actor story (SAS) corresponds to a given
extended graph γ+ by mapping the extended graph into an
extended automaton α+.

The usual definition of a finite automaton is as follows:
〈Q, I, F,Σ,∆〉 with

1) Q as a finite set of states
2) I ⊆ Q as the set of initial states
3) F ⊆ Q as the set of final states
4) Σ as a finite input alphabet
5) ∆ ⊆ Q × Σ∗ × Q as the set of transitions

If one replaces/ substitutes the states by vertices, the
input expressions by change-expressions and the transitions
by edges then one gets: 〈V, I, F, Lχ, E〉 with

1) V as a finite set of states
2) I ⊆ V as the set of initial states

3) F ⊆ V as the set of final states
4) Lχ as a finite set of input expressions
5) E ⊆ V × Lχ × V as the set of transitions

Finally one extends the structure of the automaton
by the set of property-expressions LΠ as follows:
〈V, I, F, Lχ, LΠ, E, λ〉 with λ : V −→ 2LΠ .

With this definition one has an extended automaton
α+ as an automaton who being in state v recognizes a
change-expression ε ∈ Lχ and generates as follow-up state
v′ that state, which is constructed out of state v by the
encoded deletions and/ or creations of properties given as
property-expressions from LΠ. All state-transitions of the
automaton α+ from a start-state to a goal-state are called
a run ρ of the automaton. The set of all possible runs of
the automaton is called the execution graph γexec of the
automaton α+ or γexec(α+).

Thus the simulation of an actor story corresponds to a
certain run ρ of that automaton α+ which can be generated
out of a mathematical actor story by simple replacement of
the variables in the graph γ+.

6.1.5 Task Induced Actor Requirements (TAR)
Working out an actor story in the before mentioned different
modes gives an outline of when and what participating
actors should do in order to realize a planned task.

But there is a difference in saying what an actor should
do and in stating which kinds of properties an actor needs to
be able to show this required behavior. The set of required
properties of an actor is called here the required profile
of the actor A RProfA. Because the required profile is
depending from the required task, the required profile is not
a fixed value.

In the general case there are at least two different kinds
of actors: (i) the executing actor Aexec and (ii) the assistive
actor Aassis. In this text we limit the analysis to the case
where executing actors are humans and assistive actors
machines.

6.1.6 Actor Induced Actor Requirements (UAR)
Because the required profile RProfrequ of an
executive actor realizing a task described in an actor
story can be of a great variety one has always to
examine whether the available executing actor Aexec
with its available profile RProfavail is either in a
sufficient agreement with the required profile or not,
σ : RProfrequ ×RProfavail 7−→ [0, 1].

If there is a significant dis-similarity between the
required and the available profile then one has to
improve the available executive actor to approach
the required profile in a finite amount of time
χ : Aavail,exec × RProfrequ 7−→ Arequ,exec. If such an
improvement is not possible then the planned task cannot
be realized with the available executing actors.

7

6.1.7 Interface-Requirements and Interface-Design

If the available executing actors have an available profile
which is in sufficient agreement with the required profile then
one has to analyze the interaction between the executing
and the assistive actor in more detail.

Logically the assistive actor shall assist the executing
actor in realizing the required task as good as possible.

From this follows that the executing actor has to be able
to perceive all necessary properties in a given situation, has
to process these perceptions, and has to react appropriately.

If one calls the sum of all possible perceptions and
reactions the interface of the executing actor IntfA,exec and
similarly the sum of all possible perceptions and reactions
of the assistive actor the interface of the assistive actor
IntfA,assis,then the interface of the assistive actor should
be optimized with regard to the executing actor.

To be able to know more clearly how the interface of the
assistive actor Intfassis should look like that the executive
actor can optimally perceive and react to the assistive
interface one has to have sufficient knowledge about how
the executive actor internally processes its perceptions and
computes its reactions. This knowledge is not provided by
the actor story but calls for an additional model called actor
model.

6.2 Actor Model (AM)

While one can describe in an actor story (AS) possible
changes seen from a 3rd-person view one can not describe
why such changes happen. To overcome these limits one
has to construct additional models which describe the
internal states of an actor which can explain why a certain
behavior occurs.

To enable such a transparent interaction between actor
and environment it will be assumed that an actor is generally
an input-output system (IOSYS), that means that an actor
has inputs (I) allowing some kind of perceptions of his
environment as well as outputs (O) allowing changes,
modifications in the environment. The sum of all inputs and
outputs defines the interface of an input-output system,
written Intf(x) iff x = 〈I,O〉. Furthermore it is assumed
that every actor has some behavior function φ which
determines how the actor will respond with an output given
some inputs. More formally this can be written as follows:

Def: Input-Output System (IOSYS)

IOSY S(x) iff x = 〈I,O, IS, φ〉 (6)
I := Input

O := Output

IS := Internal states

φ : I × IS 7−→ IS ×O

and with explicitly mentioning the interface:

Def: Input-Output System (IOSYS)

IOSY S(x) iff x = 〈I,O, INTF, IS, φ〉 (7)
I := Input

O := Output

INTF (x) iff x = 〈I,O〉
IS := Internal states

φ : I × IS 7−→ IS ×O

Thus the behavior function φ generates an output O
depending from the actual input I and some internal states
IS, and – this is reflexive – the behavior can again change
the internal states IS such, that these are in another shape
for a next response. This means that the same input can be
followed by different responses depending from the internal
states. This includes properties which often are called
learning and intelligence.

Because the inner states (IS) of every real system are
not directly observable it follows that all assumptions about
possible inner states as well as about the details of the
behavior function φ represent nothing else as a hypothesis
which is given in the format of a formal model. The formal
space for such hypothetical models is infinite.

The only constraints for some kind of plausibility/
soundness of such formal hypothetical models is given by
the actor story which is defining a framework within which
the hypothetic model has to be embedded.11

6.2.1 Design Principles; Interface Design

Given the actor model AM of an executive actor Aexec one
can derive some actor-based principles AxA,exec, how the
interface Intfassis,B of an intended assistive actor B should
look like to enable an optimal performance with the executive
actor A. To make the actor-based principles AxA,exec as
empirically sound as possible one needs sufficient empirical
research of real actors doing jobs like those required in the
actor story.

From the dependency of the executive-actor-based
principles for the design of an assistive-actor interface it
follows that the principles can only be as good as the
presupposed model.

11. The modern tool of Neuroscience can measure many real proper-
ties of real neurons, whose activity is assumed to underly the observable
behavior. But the limits of these measurements combined with the still
unknown complexity of the mapping between neural activity and ob-
servable behavior are not allowing today a completely defined empirical
mapping. This weakness is even more amplified by the fact, that the
factor of the consciousness filtering a small subset of practical helpful
phenomena out from the complexity of the body is today also not yet
sufficiently understood.

8

6.3 Simulation of Actor Models (AMs) within an Actor
Story (AS)

Programming a real computer with actor models and an actor
story allows the simulation of actor models embedded in an
actor story.

6.4 Assistive Actor-Demonstrator

Given the design of the interface of an assistive actor
one can realize a demonstrator based on such a design
called Demo(Intfassis,B). Every created demonstrator is
a possible candidate for the optimal solution. To check it’s
’value’ one uses the demonstrator within an usability tests.

6.5 Approaching an Optimum Result

To approach a possible optimum for a finite set of
demonstrators one applies a set of usability measurements
– called ’usability test’ – in an iterative process. A usability
test UT realizes a mapping of given demonstrators D into
a set of usability values V as follows υUT : D 7−→ D × V .
A usability test includes a finite set of objective as well as
subjective sub-tests. The values V of one usability test are
usually given as a finite set of points in an n-dimensional
space V n. Thus after a usability test υUT has been applied
to a demonstrator one has an ordered pair (D,V).

To find the relative best demonstrator in a finite set of
candidate demonstrators {(D1, V1), (D2, V2), ..., (Dm, Vm)}
one has to define a measure µ : 2V

n 7−→ V n for the
assumed finite many n-dimensional values {V n1 , V n2 , ..., V nm}
to compare these values and identify for this set an
optimal value. Thus µ(V n1 , V

n
2 , ..., V

n
m) computes a certain

V ni ∈ {V n1 , V n2 , ..., V nm}.

Applying this measure to the set
{(D1, V1), (D2, V2), ..., (Dm, Vm)} gives the best
demonstrator of this set.

7 WHAT COMES NEXT: THE REAL SYSTEM

After the completion of the AAI-analysis after n-many
iterations12 one has an actor story AS in four modes
{TAS, PAS, MAS, SAS}. Furthermore one has possibly
different actor models {AMexec, AMassist, ...}, and one
has a demonstrator Demo with the best interface (Di, V

n).
Between the assistive and the executive actor model exists
a logical dependency as well as between all actor models
and the actor story: without the actor story the actor
models are underspecified. That means the whole specified
behavior MSR is only given as the complex structure
〈AS,AMexec, AMassis, ιas,am−exec, ιas,am−assis〉 where the
mappings ι connect the actor story with the embedded
models.

12. It is actually not clear how ’big’ this n should be. Some research
is needed.

7.1 Logical Design, Implementation, Validation

To convert these results into a real working system SY Sassis
one has to process13 a logical design phase δ which takes
into account the whole specified behavior MSR as require-
ments for the behavior of the intended system. The outcome
should be a blue-print MSR,design for the implementation of
a real system, written as

δ : MSR 7−→MSR,design (8)

Based on such a blue-print the implementation phase σ
translates these ideas in a physical entity MSR,real, written
as

σ : MSR,design 7−→MSR,real (9)

Because the transfer from the AAI-analysis phase into
the logical design phase as well the transfer from the logical
design phase into the implementation phase can principally
not completely be defined one has to run a validation phase
υυ which compares the behavior requirements MSR from
the AAI-analysis phase with the behavior of the real system
MSR,real. The outcome will be some percentage of agree-
ment with the required behavior, written as

υυ : MSR ×MSR,real 7−→ [0, 1] (10)

7.2 Conceptual Gap In Systems Engineering?

The theoretically required validation of the behavior of
the real system SY Sassis,real with the required behavior
specified as whole behavior model MSR can not work out
directly, as long as the specified behavior is not available in
some implemented format.

Diverging from the usual processing of systems
engineering it will be assumed in this text that the whole
specified behavior MSR will be translated into a blue-print
within logical design (cf. Formula 8) and similarly will
the blue-print version of the whole behavior MSR,design

completely be converted in a real version MSR,real

including not only the intended assistive actor but also the
complementary executive actor as well as the necessary
actor story (cf. Formula 9).

One way to realize this concept is to implement real
simulators to mimic the required behavior . Especially it
should be possible that real users can take over the role of
the simulated executive actors within such simulations or the
real world is another actor which takes over the role of the
simulated world of the simulated actor story.

13. For all assumed phases in a systems engineering process see
formula 1 in section 2 and more elaborated in the paper Erasmus &
Doeben-Henisch 2011 [4]

9

8 THE AASE-PARADIGM

The text so far gives only a very limited account of the whole
Actor-Actor Systems Engineering (AASE) paradigm. We
hope to be able to develop it further with many illustrating
applications (case studies).

Everybody is invited to share the discussion of this new
paradigm with questions, critical remarks, hints, examples,
whatever helps to clarify this paradigm.

There exists a minimal project plan to finalize these ideas
in a first booklet (theory and case studies) until April 2018
with a publication in May 2018. Then everything can happen.

APPENDIX A
FORMALISMS

REFERENCES

[1] G. Doeben-Henisch and M. Wagner, “Validation within safety crit-
ical systems engineering from a computational semiotics point
of view,” Proceedings of the IEEE Africon2007 Conference, pp.
Pages: 1 – 7, 2007.

[2] G. Doeben-Henisch, Formal Specification and Verifica-
tion: Short Introduction. http://www.uffmm.org/science-
technology/single/themes/computer-science/personal-
sites/doeben-henisch/FSV/THEORY/fsv/fsv.html: Gerd Doeben-
Henisch, 2010.

[3] L. Erasmus and G. Doeben-Henisch, “A theory of the system engi-
neering process,” in ISEM 2011 International Conference. IEEE,
2011.

[4] ——, “A theory of the system engineering management pro-
cesses,” in 9th IEEE AFRICON Conference. IEEE, 2011.

[5] G. Doeben-Henisch, “From hci to aai. some bits of history?”
eJournal uffmm.org, pp. 1–16, 2018. [Online]. Available: https://
www.uffmm.org/2018/04/19/from-hci-to-aai-some-bits-of-history/

[6] ——, “Philosophy of the actor,” eJournal uffmm.org, pp. 1–
8, 2018. [Online]. Available: https://www.uffmm.org/2018/03/20/
actor-actor-interaction-philosophy-of-the-actor/

[7] F. Khalique, W. H. Butt, and S. A. Khan, “Creating domain non-
functional requirements software product line engineering using
model transformations,” in 2017 International Conference on Fron-
tiers of Information Technology (FIT), Dec 2017, pp. 41–45.

[8] F. Fellir, K. Nafil, and R. Touahni, “Analyzing the non-functional
requirements to improve accuracy of software effort estimation
through case based reasoning,” in 2015 10th International Con-
ference on Intelligent Systems: Theories and Applications (SITA),
Oct 2015, pp. 1–6.

[9] D. Mairiza, D. Zowghi, and V. Gervasi, “Conflict characterization
and analysis of non functional requirements: An experimental ap-
proach,” in 2013 IEEE 12th International Conference on Intelligent
Software Methodologies, Tools and Techniques (SoMeT), Sept
2013, pp. 83–91.

[10] A. Suhr, C. Rosinger, and H. Honecker, “System design and archi-
tecture ?? essential functional requirements vs. ict security in the
energy domain,” in International ETG-Congress 2013; Symposium
1: Security in Critical Infrastructures Today, Nov 2013, pp. 1–9.

[11] B. Yin, Z. Jin, W. Zhang, H. Zhao, and B. Wei, “Finding optimal
solution for satisficing non-functional requirements via 0-1 pro-
gramming,” in 2013 IEEE 37th Annual Computer Software and
Applications Conference, July 2013, pp. 415–424.

[12] X. L. Zhang, C. H. Chi, C. Ding, and R. K. Wong, “Non-functional
requirement analysis and recommendation for software services,”
in 2013 IEEE 20th International Conference on Web Services, June
2013, pp. 555–562.

[13] I. Menzel, M. Mueller, A. Gross, and J. Doerr, “An experimental
comparison regarding the completeness of functional requirements
specifications,” in 2010 18th IEEE International Requirements En-
gineering Conference, Sept 2010, pp. 15–24.

[14] Y. Liu, Z. Ma, R. Qiu, H. Chen, and W. Shao, “An approach to inte-
grating non-functional requirements into uml design models based
on nfr-specific patterns,” in 2012 12th International Conference on
Quality Software, Aug 2012, pp. 132–135.

[15] M. Kassab, O. Ormandjieva, and M. Daneva, “An ontology based
approach to non-functional requirements conceptualization,” in
2009 Fourth International Conference on Software Engineering
Advances, Sept 2009, pp. 299–308.

[16] X. Lian, J. Cleland-Huang, and L. Zhang, “Mining associations
between quality concerns and functional requirements,” in 2017
IEEE 25th International Requirements Engineering Conference
(RE), Sept 2017, pp. 292–301.

[17] S. Abrahão, C. Gravino, E. Insfran, G. Scanniello, and G. Tortora,
“Assessing the effectiveness of sequence diagrams in the compre-
hension of functional requirements: Results from a family of five
experiments,” IEEE Transactions on Software Engineering, vol. 39,
no. 3, pp. 327–342, March 2013.

